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Most states in the Hilbert space are maximally entangled. This fact has proven useful to investigate—

among other things—the foundations of statistical mechanics. Unfortunately, most states in the Hilbert

space of a quantum many-body system are not physically accessible. We define physical ensembles of

states acting on random factorized states by a circuit of length k of random and independent unitaries with

local support. We study the typicality of entanglement by means of the purity of the reduced state. We find

that for a time k ¼ Oð1Þ, the typical purity obeys the area law. Thus, the upper bounds for area law are

actually saturated, on average, with a variance that goes to zero for large systems. Similarly, we prove that

by means of local evolution a subsystem of linear dimensions L is typically entangled with a volume law

when the time scales with the size of the subsystem. Moreover, we show that for large values of k the

reduced state becomes very close to the completely mixed state.

DOI: 10.1103/PhysRevLett.109.040502 PACS numbers: 03.67.Mn, 03.65.Fd, 05.50.+q

Introduction.—Entanglement is the defining character-
istic of quantum mechanics: it is a key ingredient in
quantum information processing [1], quantum many-
body theory [2], and the description of novel quantum
phases of matter [3]. More recently, quantum entanglement
has shed new light on the foundations of statistical me-
chanics and the processes of equilibration and thermaliza-
tion. The idea lies in the fact that even with unitary
evolution, if the entanglement is large enough, the expec-
tation values of local observables are typically close to
those of the thermal state [4–6]. It has been shown that
such typicality is related to the volume law for entangle-
ment in random states [6]. The problem with this approach
is that random states are not physical because they are not
accessible in nature. Indeed, one needs a doubly exponen-
tial time in the system size to access all the states of the
Hilbert space. For this reason, some authors have argued
that the Hilbert space is an illusion [7].

Nevertheless, physical states do thermalize, as has been
shown in experiments with cold atoms, theoretical models,
and numerical simulations [8–10], or show typicality in the
expectation value of local observables [11]. Does this mean
that the mechanism for thermalization is not entangle-
ment? There are several examples of physical relevance
showing that when evolution time scales with the size of
the system, the state is entangled with a volume law
[12,13]. Can we thus prove any statement about the typi-
cality of such situations?

In this Letter, we propose to answer the following ques-
tion: how much are typical physical states entangled? We
adopt the 2-Renyi entropy as a quantum entanglement
quantifier [14], as opposed to von Neumann entanglement
entropy (EE). While from the technical point of view this
choice allows for a drastic simplification of the theoretical

treatment, on physical grounds we expect all the scaling
results for typical physical states presented in this Letter to
be fulfilled by EE as well any other sound quantum entan-
glement measures.

To this end, we define an ensemble EðkÞ of physical states
in this way: pick a product state of a multipartite system,
then act with k independent random unitaries, each of them
compatible with some locality structure, e.g., supported on
edges of a graph. This mimics the continuous evolution
generated over a time k by a local (time dependent)
Hamiltonian and is amenable to an elegant analytical treat-
ment. Indeed, by applying the group theoretic techniques
of Ref. [15], we can compute the ensemble average and
variance of the 2-Renyi entropy S2 of a subregion A with
boundary of size j@Aj. The result is that, typically for
k ¼ Oð1Þ, we obtain an area law that is an entanglement
S2 ¼ Oðj@AjÞ, while for k scaling as the linear size L of the
system, the average purity shows a volume law. Moreover,
we show that fluctuations are small, and that there is a
measure concentration around the average value. As a final
result, we show that for k ! 1, the subsystem typically
reaches the completely mixed state.
Note that the upper bounds to entanglement laws that

incorporate the locality of the interactions are known.
Using the technique of the Lieb-Robinson bounds, one
can prove that the entanglement that can be produced in
a subsystem A by evolving for a time t is upper bounded by
a quantity scaling with j@Aj � t. Here v is limit speed for
the interactions in the system [16]. In other words, for
t ¼ Oð1Þ the area law for the entanglement is an upper
bound, while the volume law is an upper bound for
t ¼ OðLÞ. These upper bounds have been proven very
useful [17], e.g., in the context of simulability of quantum
many-body systems or the understanding of topological
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order. However, these are just upper bounds, and they deal
with an extremal case. It could be the case that most
Hamiltonians are very weakly entangled. Therefore, one
wonders how typical area and volume laws are. Are these
upper bounds saturated on average, and how strong are the
fluctuations around the average? The results of this Letter
show that almost every local evolution entangles the sub-
system with a scaling law S2 ¼ Oðj@Aj � tÞ.

A second motivation is found in the context of unitary
t-designs [18]. Known results scale with some polynomial
of the total number n of degrees of freedom [18,19]. In this
Letter, we focus on the statistics of the observables of a
reduced system, and the asymptotic results scale with the
size of the reduced system.

Statistical ensemble of physical states.—We start by

defining the ensembles EðkÞ; henceforth, we will refer to
the elements of these ensembles as the physical states. Let
V be a set of vertices endowed with a probability measure
p:X � V � pðXÞ 2 ½0; 1� with P

XpðXÞ ¼ 1. To each of
the vertices x 2 V, we associate a local d-dimensional
Hilbert space H x ’ Cd. The total Hilbert space is thus
H V � �x2VH x, or the space of n qudits. A completely
factorized state in H V has the form j�i ¼ �x2V j�xi; let
! ¼ j�ih�j be its density matrix. The statistical ensem-

bles of quantum states EðkÞ are constructed in the following
way: We first draw a subset X � V according to the
measure p, and then we draw a unitary UX 2 UðH XÞ
according to a chosen measure, d�ðUjXÞ. Then, we define
Eðp; d�Þ ¼ fUXj�igX;UX;�. This ensemble can be general-

ized to the k-iterated EðkÞ by considering unitaries of
the form U ¼ Q

k
i¼1 UXi

, where the Xi’s (UXi
) are drawn

according to the product probability
Q

k
i¼1 pðXiÞ

(
Q

k
i¼1 d�ðUXi

Þ): at each tick i of the clock, a new inde-

pendent set of Xi’s and a unitary UXi
are picked. In this

ensemble, we can compute the statistical moments of any
Hermitian operator. It turns out that by varying over the
UX, one can pick all the possible factorized�’s so that the
� dependence can in fact be dropped.

Subsystem purity.—We now examine the typical entan-

glement in the statistical ensembles EðkÞ. Let us consider a
bipartition V ¼ A [ B in the system H V ¼ H A �H B,
whereH J ¼ �x2JH x with obvious notation. We take the
state � 2 Ek and consider the reduced density matrix
�A ¼ TrBð�Þ. In order to evaluate the entanglement of �,
we compute the purity P ¼ TrAð�2

AÞ and thus the 2-Renyi

entropy S2 ¼ � logP. To compute this trace, we use the
well-known fact that the trace over the square of every
operator can be computed as the trace of two tensored
copies of that operator times the swap operator.
Indeed, defining ��2 ¼ U�2!�2Uy�2 and considering
the order 2 shift operator (swap) on Tx:H �2

x � H �2
x ,

we have P ¼ TrAð�
N

2

A
~TAÞ ¼ Tr½��2TA�, where ~TA¼N

x2ATx:ðH AÞ
N

2� ðH AÞ
N

2 by ji1; i2i � ji2; i1i is
the order 2 shift operator in the A space H A ¼ �i2AH i

and TA; ðH A �H BÞ�2 ! ðH A �H BÞ�2 is given by
TA ¼ ~TA � 1B. We can now consider different concrete
ensembles. As a basic model, let us consider the case in
which there is just a single edge: the system Eedge consists

of two sites A ¼ fig and B ¼ fjg connected by an edge e so
that the Hilbert space isH e ¼ H A �H B. of dimensions
dA ¼ dB ¼ d. The probability distribution is the trivial
pðeÞ ¼ 1, and we pick the unitaries UeðH eÞ with the
Haar measure d�ðUeÞ ¼ d�Haar. Notice that in this case
the ‘‘locality’’ does not play any particular role. There is
just one edge, and so the unitaries Ue are the unitaries over
the whole Uð4Þ. Following Ref. [15], one can exploit the
group theoretic structure of the ensemble E to compute
average and statistical moments of operators. The average
of an operator over a group action is indeed the weighted
sum of projectors onto the IRreps of the representation of
that group. A direct calculation (see Supplemental Material
[20]) shows that �PU ¼ d3=dþ ¼ 2d=ðd2 þ 1Þ � 2Nd. For
very large d, we approximate the completely mixed state.
Since purity is a positive definite quantity that is going to
zero in the thermodynamic limit, in the limit for the large
system the fluctuations are also very small. Notice that this
result reproduces what we know: a random state in the
whole Hilbert space is typically very entangled.
Propagation of typical entanglement.—The main goal of

this paper is to explore the typicality of entanglement when
some local conditions on how the ensembles of states are
constructed. The local conditions are implemented by act-
ing k times with random local quantum circuits. We show
that the loss of purity in a subsystem A propagates, on
average, within a length �k within the bulk of A. In this
way, we can show that, on average, the entanglement for
k ¼ Oð1Þ follows the area law, and for a generic k it
follows S2 ¼ Oðj@Aj � tÞ. Moreover, we show that the
variance of the distribution of entanglements is very small;
the average entanglement is typical. We can then conclude
that the laws that determine upper bounds for the entangle-
ment actually also determine the typical situation. In order
to obtain this kind of propagation result, we will exploit
a result on the algebra of the permutations TA (A � V)
defined above. Let us start by defining the superoperator
that averages over the unitaries UX 2 UðH XÞ, that is,
RXðTAÞ ¼

R
d�ðUjXÞðUy

XÞ�2TAðUXÞ�2. Notice that when
d� is the Haar measure, the R0

Xs are projection super-
operators; in the rest of the Letter we will focus on this
case. Then we can evaluate the average purity as

�P ¼ h!�2;RðTAÞi (1)

where R ¼ P
X�VpðXÞRX is a self-dual (Hermitian)

superoperator. As far as the purity calculations are con-
cerned, this superoperator completely characterizes the

ensembles EðkÞ. Indeed, it is now easy to see that—in
view of the statistical independence of each iteration—

the average purity for the k-iterated ensemble EðkÞ is given
by the expression (1) with R replaced by Rk. In order to
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understand the spectral properties of R, observe
that k R k� P

X�VpðXÞ k RX k� P
X�VpðXÞ ¼ 1. Since

Rð1Þ ¼ 1 we see that k R k¼ 1 whence the eigenvalues
�� of R are bounded in modulus by one, and the highest
one is �1 ¼ 1. One can then write �Pk ¼ P

��
k
�c�, where

c� ¼ h!�2; ðTAÞ�i and ðTAÞ� denotes the projection of TA

onto the eigenvalue �� eigenspace of R. For k ! 1 this
quantity goes to the limite value c1, while the convergence
rate is dictated by the second highest eigenvalue �2 of
R [21].

One of the key steps to obtain the results of this Letter is to
realize that theR’s superoperators can be regarded as maps

on the 2jVj-dimensional space spanned by the TX’s (X � V)

into itself (instead of maps of the d4jVj-dimensional
LðH �2

V Þ into itself). For example, if X ¼ fa; bg, i.e., an
edge and A is any subset of V, a calculation similar to the
above leads to

RXðTAÞ ¼ NdðTAnX þ TA[XÞX \ A � ; ^ X \ B � ;;
RXðTAÞ ¼ TA otherwise: (2)

The edge RX’s have low-dimensional invariant subspaces
of permutations; e.g., in a chain topology the span of the
TA’s associated with connected A’s is invariant. This re-
mark, along with the fact that h!�2; TXi ¼ 1 for product
states, allows for drastic simplifications in the evaluation of

the average purity of EðkÞ. The content of Eq. (2) is thatRX0

has a nontrivial action only if the edge X straddles the
boundary between the systems A and B.

As an example, let us show how the algebra Eq. (2)
simplifies the calculation of the average purity for the
single-edge model. The subsystem A is just one site,
and therefore Ane ¼ ; and A [ e ¼ fA; Bg. Moreover,
ðT;Þ ¼ I and ReðTAÞ ¼ NdðI þ TATBÞ. Finally, we get
�P ¼ h!�2;ReðTAÞi ¼ 2Nd. In the case of qubits, d ¼ 2
and 2N2 ¼ 0:8. It is also possible to compute the variance
by generalizing the group averages to higher power of the
density operator to obtain �P ¼ 0:017. A systematic treat-
ment is to be found in [21].

At this point, we consider a system with a notion of
locality, so that it makes sense how the average entangle-
ment propagates. For this, we define the k-random edge

model EðkÞ
random on a graph G ¼ ðV; EÞ, where V is the set of

the nodes and E the set of the edges. We define a flat
probability distribution on the edges of the graph �:
pðXÞ ¼ 1=jEj if X 2 E and zero otherwise. Then we
pick the unitaries on the edges with the Haar measure
d�ðUjXÞ ¼ d�Haar. We call @A � E the subset of edges
that have nonnull intersection with both A and B. The
probability of an edge to belong to @A is thus
q ¼ j@Aj=jEj. We are interested in the thermodynamic
situations where q 	 1. Using Eq. (2), we get

RðTAÞ¼
X

X2En@A
pðXÞTAþ

X
X2@A

pðXÞNd½TA[XþTAnX�; (3)

where X 2 E is an edge of the graph. One can see that the
only terms in Eq. (3) that live across the boundary will
decrease the purity of the subsystem.Moreover, the support
of RðTAÞ is now on graphs with locally modified bounda-
ries. For k ¼ 1 it is then easy to find the average purity �P¼P

X2En@ApðXÞh!�2; TAi þP
X2@ANdh!�2; TA[X þ TAnXi ¼

1� ð1� 2NdÞq. From Eq. (3) we see that every application
ofRX transforms the subsetA into a superposition ofA [ X
and AnX so that at any successive iteration the boundary of
the new subset changes, and its boundary length may
change. The iteration for k scaling with the linear size of
the system gives the results (see Supplemental Material
[20]) �Pk ’ ð1� qð1� 2NdÞÞk. Therefore, the average

2-Renyi entropy of the ensemble is �S2ðkÞ � �logPk 

� log �Pk ’ �k logð1� qð1� 2NdÞÞ ’ ð1� 2NdÞqk. In
terms of the average entangling power [15], one gets
�S2ðkÞ 
 kj@Aj=jEjepðUÞU. In other words, the average

2-Renyi entropy for the random edge model of the kth
iteration is lower bounded by k times the fraction of vertices
in the boundary of the regionA times the average entangling
power of an edge unitary, showing a linear increase of
entropy in time, or, in other words, the entanglement is
propagating into the bulk of A. Moreover, one can compute

variances of �P and show that
ffiffiffiffiffiffiffiffiffi
�S2

p
=S2 � 1=

ffiffiffiffiffiffiffiffij@Ap j [21].
This in turn implies measure concentration (typicality) in
the thermodynamic limit j@Aj ! 1. So a random circuit
model of this type can reproduce the Haar measure for the
statistics of observables on the reduced system, as k scales
with the subsystem size.
The linear chain.—We now move to the case corre-

sponding to a time-dependent Hamiltonian that is the
sum of local terms. In this model, the unitaries act on all
the edges of the graph �. The probability distribution is
thus pðXÞ ¼ 1 for X ¼ V and zero otherwise. For the sake
of simplicity in the following, we consider the case of the
graph � being a bipartite chain of length L ¼ LA þ LB.
Extensions to higher dimensional geometries are presented
in [21]. We will label by Ue the unitary acting on the edge
straddling the (A, B) bipartition, while we will use the
labels ai, bi for the unitaries that act in the bulk of A, B,
respectively (see Fig. 1). We label the sites of the chain as
LA; . . . ; 1A; 1B; . . . ; LB. Since the unitary is a product of all
the edge unitaries, we need to specify in which order they
act. In the following, the unitaryU� will always denote the
product over all the edges in E with the order given by the
permutation �, so U� is the ordered product over the local
two-qudit unitaries. This corresponds to the (time ordered)
infinitesimal evolution with a local Hamiltonian, where �
gives the time ordering U� ¼ U�ðe1Þ . . .U�ðejEjÞ. At this

point, we construct the set EðkÞ
ð�Þð�Þ ¼ fU�j�igU with mea-

sure d�ðUÞ ¼ �ðU�U�Þ
Q

e2Ed�HaarðUeÞ. This en-
semble approximates all the states that can be evolved
from a factorized state with a local Hamiltonian acting
for an infinitesimal amount of time. By k iteration, we
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obtain the time evolution for a finite time k:EðkÞ
chainð�Þ ¼

fQk
i¼1 U�i

j�igU;�. Here, we consider all the possible

ordered sequences of unitaries by taking, at each time
step, a permutation � of the edges uniformly at random.
This ensemble approximates all the states that can be
reached in time k by the evolutions originated by all the
possible time-dependent Hamiltonians on a graph. The

ensemble EðkÞ thus only depends on the number of
iterations (the ‘‘time’’) k and the graph �. The loss of
purity due to the action of the unitaries depends on their
order. Thus, in order to find an upper bound to the
average purity, we consider the ordering that gives the
minimum loss of purity. As k increases, the nodes at
distance k from the boundary participate in the averaging
calculation. A lengthy calculation shows that the purity
gets a factor Nd for every node participating in the
average, and we find (see Supplemental Material [20])
�Pk ¼ P

m¼k�1
m¼0 2ðkþm�1

m ÞNðkþmÞ
d . Summing the series for

�Pk for large values of k, one finds �Pk ’ 2½Nd=
ð1� NdÞ�k. Recall that this equation, in view of the
choice of the � corresponding to the U� with the least
entangling power, is an upper bound for the purity in

EðkÞ
chain. The exponential decay of the purity in k is due to

the fact that all the qudits at distance k from the edge get
mixed. Since the average 2-Renyi entropy is �S2 
¼
� log �Pk, we have the lower bound

�S2 
 k log

�
1� Nd

Nd

�
� log2 ’ k logd� log2 (4)

(the last approximation holds for large d). Equation (4)
for k ¼ OðLAÞ implies (a) a volume law for the entan-
glement scaling and (b) typicality; that is, a nearly
minimal value of the average of purity (in view of the
Markov inequality) forces also the fluctuations around
this average to be small. For k > jLAj one has no longer
a linear increase of entanglement with time but observes
a saturation. This type of behavior has been found in
examples of entanglement dynamics after a quench using
conformal field theory techniques [12,19,22].

To study the limit of average purity for k ! 1, we
first note that the chain superoperator is a (�-ordered)
product of (noncommuting) projections Rchain ¼
R�ðjEjÞ � � �R�ð1Þ. This implies that k Rchain k� Q

e2E k

Re k� 1; again, this means that all the eigenvalues
of Rchain are smaller in modulus than 1 and therefore
asymptotically just fixed points; e.g.,1, TV , contribution to
TA survives. If now one assumes that the symmetric combi-
nation 1þ TV is the only relevant fixed point, one finds
�Pk!1 ¼ ðd2L�LA þ dLþLAÞ=dLðdL þ 1Þ. We have checked
this result by numerical simulations [21] for the least and
most entangling�’s, and we conjecture it to hold true for all
orderings and also the one-dimensional chain scenario. For
large jVj ¼ L one has �Pk!1 ’ d�LA þ dLA�L that, in turn,
forLA � L=2, shows that the asymptotic purity differs from
that of the totally mixed state 1A=d

LA for terms of order
d�LB . Finally, if LB � 1, this implies that the vast majority

of the states in EðkÞ, once reduced to A, are close in L1 norm
to the maximally mixed state.
Conclusions.—We investigated the typical entanglement

in physical states. To this end, we defined statistical ensem-
bles of physical states by considering product states on a
multipartite system and evolving them with k independent
stochastic local gates. Ensemble averages can be computed
by introducing suitable superoperators and using group-
theoretic tools, as in [15]. We would like also to mention
that although in this Letter we used purity to quantify the
entanglement, this method can be extended in a straightfor-
ward way to a general �-Renyi entropy by natural modifi-
cations of superoperator R and permutation TA in Eq. (1)
[21]. Assuming that one is allowed to perform an analytic
continuation in the limit � ! 1þ, we apply our results also
for the von Neumann entanglement entropy. States that are
obtained by local evolution for a constant O(1) time have a
typical entanglement given by the area law. While the area
law was known to hold as an upper bound, we have shown
that it is indeed typical. On the other hand, states that are
obtained by evolution for a time scaling with the size of the
system are shown to almost always obey the volume law for
entanglement like the typical (Haar) random states do. At
this point, wemay speculate as towhether this result implies
local thermalization for physical states.
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