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The famous question of Kac ‘‘can one hear the shape of a drum?’’ addressing the unique connection

between the shape of a planar region and the spectrum of the corresponding Laplace operator, can be

legitimately extended to scattering systems. In the modified version, one asks whether the geometry of a

vibrating system can be determined by scattering experiments. We present the first experimental approach

to this problem in the case of microwave graphs (networks) simulating quantum graphs. Our experimental

results strongly indicate a negative answer. To demonstrate this we consider scattering from a pair of

isospectral microwave networks consisting of vertices connected by microwave coaxial cables and

extended to scattering systems by connecting leads to infinity to form isoscattering networks. We show

that the amplitudes and phases of the determinants of the scattering matrices of such networks are the

same within the experimental uncertainties. Furthermore, we demonstrate that the scattering matrices of

the networks are conjugated by the so-called transplantation relation.

DOI: 10.1103/PhysRevLett.109.040402 PACS numbers: 03.65.Nk, 05.45.Ac

The problem of isospectrality goes back to 1966 when
Kac posed a famous question: ‘‘can one hear the shape of a
drum?’’ [1]. It addressed the issue of uniqueness of the
spectrum of the Laplace on the planar domain with
Dirichlet boundary conditions. The answer was not found
until 1992 when Gordon, Webb, and Wolpert [2,3] using
the Sunada’s theorem [4] found a way to construct pairs of
isospectral domains in R2. An experimental confirmation
that the shape of a drum cannot be heard was presented by
Sridhar and Kudrolli [5] for a pair of isospectral microwave
cavities. Using the same set of isospectral microwave
cavities as the ones considered in [5], Dhar et al. [6]
investigated the question of isospectrality in the presence
of the scatterers placed inside the cavities. They demon-
strated that isospectrality is unrelated to the underlying
classical dynamics of a particle.

The inability of determining the shape from the spec-
trum alone does not preclude possibilities of distinguishing
one drum from another in more sophisticated experiments.
Indeed, based on numerical simulations, Okada et al. [7]
conjectured that isospectral domains constructed by
Gordon, Webb, and Wolpert can be in fact discriminated
in scattering experiments looking at poles of the scattering
matrices.

The original question of Kac can be posed for other
vibrating systems. Gutkin and Smilansky [8] considered
the problem of isospectrality in the context of quantum
graphs. They proved that one can recover a graph from its
spectrum if the lengths of its bonds are incommensurate.
Their result gives room for the existence of graphs with
different metric and topological properties but the same
spectrum. Up to now there is only one method of con-
struction of isospectral graphs [9,10] where the authors

extended the well-known Sunada’s approach. The method
is based on the elements of representation theory, and its
direct corollary ensures the existence of transplantation
between isospectral graphs. Roughly speaking, in the pro-
cess of transplantation one graph is divided into smaller
building blocks which are then reassembled to form the
second one of a different shape. The method also provides
correct boundary conditions at vertices of the new graph.
As a result, to every eigenfunction on the first graph an
eigenfunction with the same eigenvalue on the second one
is assigned. The procedure is reminiscent of the one used in
designing isospectral planar domains where the ‘‘drum’’ is
cut into subdomains which are then rearranged into a new
one with the same spectrum. Following the conjecture of
Okada et al., one can thus ask whether the geometry of a
quantum graph can be determined by scattering
experiments.
The negative answer was given by Band, Sawicki, and

Smilansky [11,12]. They extended the theory of isospec-
trality to scattering systems by considering isospectral
quantum graphs with attached infinite leads and developed
a method of constructing isoscattering pairs of graphs.
According to the authors of [11,12], two graphs are, by
definition, isoscattering if their scattering matrices have the
same poles—such graphs are called isopolar, or the ampli-
tudes and phases of the determinants of their scattering
matrices are equal; in this case, the graphs are called
isophasal. In our approach, we adopt the latter definition.
In particular, they showed that any pair of isospectral
quantum graphs obtained by the method described in
[9,10] is isoscattering if the infinite leads are attached in
a way preserving the symmetry of the isospectral construc-
tion [11,12].
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Quantum graphs can be considered as idealizations of
physical networks in the limit where the widths of the wires
are much smaller than their lengths. They were success-
fully applied to model variety of physical problems; see,
e.g., [13] and references cited therein. They can also be
realized experimentally. Recent developments in various
epitaxy techniques allowed also for the fabrication and
design of quantum nanowire networks [14,15].

In a seminal work by Hul et al. [16], it was shown
how quantum graphs could be successfully simulated by
microwave networks. It was demonstrated that the one-
dimensional Schrödinger equation for quantum graphs is
formally equivalent to the telegrapher’s equation describ-
ing microwave networks. For that reason properties of
quantum graphs can be studied experimentally using mi-
crowave networks with the same topology and boundary
conditions at the vertices. Various spectral and scattering
properties of microwave networks have been studied so
far [16–19].

A quantum graph consists of n vertices connected by B
bonds. Each vertex i of a graph is connected to the other
vertices by vi bonds; vi is called the valency of the vertex i.
A wave function propagates on each bond of a graph
according to the one-dimensional Schrödinger equation.
Spectral properties of a graph are determined by the lengths
of bonds connecting vertices and vertex boundary condi-
tions relating amplitudes of the waves meeting at each
vertex. In the following, we consider graphs with the two
most physical vertex boundary conditions: the Neumann
and Dirichlet ones. The former imposes the continuity and
vanishing of the sumof the derivatives calculated at a vertex
i of waves propagating in bonds meeting at i. The latter
demands vanishing of the wave function at the vertex.

In order to test experimentally a negative answer to
themodifiedKac’s question, we consider two graphs shown
in Figs. 1(a) and 1(b). The graphs are isospectral [11].
The isoscattering graphs are obtained from them by attach-
ing two infinite leads L1

1 and L1
2 . Two corresponding

microwave isoscattering networks constructed from micro-
wave coaxial cables are shown in Figs. 1(c) and 1(d). In
order to preserve the same approximate size of the graphs in
Figs. 1(a) and 1(b) and the networks in Figs. 1(c) and 1(d),
respectively, the lengths of the graphs were rescaled down
to the physical lengths of the networks, which differ from
the optical ones by the factor

ffiffiffi

"
p

, where " ’ 2:08 is the
dielectric constant of a homogeneous material filling the
space between the inner and the outer leads of the cables.

The graph in Fig. 1(a) consists of n ¼ 4 vertices con-
nected by B ¼ 4 bonds. The valency of the vertices 1 and 2
reads v1;2 ¼ 4 (including leads), while for the other ones

vi ¼ 1. At the vertices with numbers 1, 2, and 3, the
Neumann vertex conditions are satisfied, while for the
vertex 4 the Dirichlet condition is imposed. The second
graph [see Fig. 1(b)] consists of n ¼ 6 vertices connected
by B ¼ 5 bonds. At the vertices with numbers 1, 2, 3,

and 5, we impose the Neumann vertex conditions, while
for the vertices 4 and 6 we have the Dirichlet one.
Each system is described in terms of 2� 2 scattering

matrix Sð�Þ,

Sð�Þ ¼ S1;1ð�Þ S1;2ð�Þ
S2;1ð�Þ S2;2ð�Þ
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FIG. 1 (color online). A pair of isoscattering quantum graphs
and the pictures of two isoscattering microwave networks are
shown in the panels (a),(b) and (c),(d), respectively. Using the
two isospectral graphs, (a) with n ¼ 4 vertices and (b) with
n ¼ 6 vertices, isoscattering quantum graphs are formed by
attaching the two infinite leads L1

1 and L1
2 (green dashed lines).

The vertices with Neumann boundary conditions are denoted by
blue full circles, while the vertices with Dirichlet boundary
conditions by red open ones. The two isoscattering microwave
networks with n ¼ 4 and n ¼ 6 vertices, which simulate quan-
tum graphs (a) and (b), respectively, are shown in the panels
(c) and (d). The vertices of both networks are numbered, the
numbers are colored [red (blue)], that refers to the [Neumann
(Dirichlet)] boundary conditions at the vertices. The panel
(e) shows the experimental setup used to measure the two-port
scattering matrix Sð�Þ of the networks. In the experiment, the
vector network analyzer Agilent E8364B was used.
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relating the amplitudes of the incoming and outgoing
waves of frequency � in both leads.

Since the graphs presented in Figs. 1(a) and 1(b) are
isoscattering, the phases of the determinants of their scat-
tering matrices should be equal for all values of �:

Im½logð detðSðIÞð�ÞÞÞ� ¼ Im½logð detðSðIIÞð�ÞÞÞ�: (2)

In order to measure the two-port scattering matrix Sð�Þ, we
connected the vector network analyzer (VNA) Agilent
E8364B to the vertices 1 and 2 of the microwave networks
shown in Figs. 1(c) and 1(d) and performed measurements
in the frequency range � ¼ 0:01–1:7 GHz. The connection
of the VNA to a microwave network [see Fig. 1(e)] is
equivalent to the attaching of two infinite leads to quantum
graphs, which means Figs. 1(a) and 1(b) correctly describe
the actual experimental arrangement.

The optical lengths of the bonds of the microwave net-
works had the following values:

a ¼ 0:0985� 0:0005 m; 2a ¼ 0:1970� 0:0005 m

b ¼ 0:1847� 0:0005 m; 2b ¼ 0:3694� 0:0005 m

c ¼ 0:2420� 0:0005 m; 2c ¼ 0:4840� 0:0005 m:

At the frequency � ¼ 1:7 GHz, the total optical length
of the networks spans 5.96 wavelengths of the microwave
field. The uncertainties in the bond lengths of the networks
are due to the preparation of Neumann v1;2 ¼ 4 and

Dirichlet vertices. In the case of the first ones, the internal
leads of the cables were soldered together, while the
Dirichlet vertices were prepared by closing the cables
with brass caps to which the internal and external leads
of the coaxial cables were soldered.

In the case of the microwave networks, where one deals
with losses in the microwave cables [16], not only the
phase of the determinant � ¼ Im½logð detðSð�ÞÞÞ� but
also the amplitude j detðSð�ÞÞj as well gives an insight
into the resonant structure of the system. The amplitudes
and the phases of the determinants of the scattering matri-
ces of the experimentally studied networks are shown in
Figs. 2(a) and 2(b), respectively. One sees that especially
for lower frequencies 0.01–1.0 GHz there is an excellent
agreement between the results obtained for the both net-
works. The amplitudes of the determinants are so close to
each other that the differences between them are hardly
resolved in Fig. 2(a). The phases of the determinants [see
Fig. 2(b)] are in very good agreement in the full range of
the investigated frequency � ¼ 0:01–1:7 GHz. In order to
demonstrate the sensitivity of the spectral properties of the
networks to the choice of the boundary conditions, we
compared in Figs. 2(c) and 2(d) the amplitudes and the
phases of the determinants of the scattering matrices mea-
sured for the network presented in Fig. 1(c) (blue solid
line) and the modified network Fig. 1(d) (red dashed line),
where the Neumann boundary condition in the vertex 5
was replaced by the Dirichlet one. One can easily see in

Figs. 2(c) and 2(d) that such a modification causes a huge
departure from the isoscattering properties.
Our experimental results strongly suggest the impossi-

bility of ‘‘hearing’’ of the shape of a graph or, in other
words, that the question ‘‘are scattering properties of graphs
uniquely connected to their shapes?’’ has to be answered in
the negative.
Some small differences between the amplitudes appear-

ing for � > 1 GHz are due to different lengths of the net-
works. As it was discussed earlier, the bond lengths are
known only with a certain accuracy. In order to check the
influence of different bond lengths, we performed numeri-
cal calculations which also took into account the internal
absorption of microwave cables [16]. We found that at
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FIG. 2 (color online). (a) The amplitude of the determinant of
the scattering matrix obtained for the microwave networks with
n ¼ 4 (blue solid line) and n ¼ 6 (red dotted line) vertices.
(b) The phase of the determinant of the scattering matrix
obtained for the microwave networks with n ¼ 4 (red dotted
line) and n ¼ 6 (blue solid line) vertices. (c),(d) The amplitudes
and the phases of the determinants of the scattering matrices,
respectively, measured for the network presented in Fig. 1(c)
(blue solid line) and the modified network Fig. 1(d) (red dashed
line), where the Neumann boundary condition in the vertex 5
was replaced by the Dirichlet one. The results are presented in
the frequency range 0.01–1.7 GHz.
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certain realizations of the networks lengths the results, not
shown here, mimic the behavior visible in Fig. 2(a).

It was proven by the authors of [11] that the graphs
considered in this Letter have an additional important
property; namely, the scattering matrices of the graphs
are conjugated to each other by the following transplanta-
tion relation:

SðIIÞð�Þ ¼ T�1SðIÞð�ÞT; (3)

whereT ¼ ð11 �1
1 Þ. It is worth noting that the matrix T does

not depend on the frequency, and Eq. (3) is valid for all
values of �.

In order to check the transplantation relation expressed
by Eq. (3), we transformed the experimentally measured

scattering matrix of the first network ~SðIÞð�Þ ¼ T�1SðIÞð�ÞT
and compared it to the scattering matrix of the second

network SðIIÞð�Þ. In Fig. 3, we present the results for the
real and imaginary parts of S1;1 and S2;1 elements, respec-

tively. The figure shows clearly that the transplantation
relation for the real and imaginary parts of the S1;1ð�Þ
and S2;1ð�Þ elements works very well. Some small differ-

ences seen for � > 1 GHz are caused, as previously, by
small differences in the cables’ lengths. However, in gen-
eral, the transformed scattering matrix of the first network
~SðIÞð�Þ reconstructs very well the scattering matrix of the

second one SðIIÞð�Þ.
The considered microwave networks are obviously dis-

sipative due to the absorption in the bonds. The losses are
proportional to the total length of bonds, in our case the
same for both networks. As it was shown in [16], losses can
be effectively incorporated to the description by treating
the wave number k as a complex quantity with an
absorption-dependent imaginary part Im½k� and the real
part Re½k� ¼ 2�

ffiffiffi

"
p

�=c, where c is the speed of light in
vacuum. On the other hand, the authors of [12] proved that
the transplantation formula (3) is satisfied also for complex
k (see p. A-152 in [12]). It was thus reasonable to expect
that the influence of dissipation on the presented results can
be neglected, and it was indeed the case. The above theo-
retical findings were also confirmed in the numerical cal-
culations (not presented here) which showed that the
internal absorption of the cables does not influence the
transplantation relation (3). Consequently, the validity of
the transplantation relation between the two-port scattering
matrices could be experimentally demonstrated with such a
good accuracy as in Fig. 3.

Summarizing, we experimentally investigated the scat-
tering properties of two microwave networks. We showed
that the concept of isoscattering graphs was not only a
theoretical idea, but it could be also realized experimen-
tally. We demonstrated that the microwave networks con-
sidered in the experiment are isoscattering; i.e., the phases
and amplitudes of the determinant of the two-port scatter-
ing matrices are the same, within the experimental errors,
for all the frequencies considered. In this way, we strongly

support a negative answer to the title question about the
possibility of uniquely connecting the shapes and scatter-
ing properties of graphs. In addition, we checked the
validity of the transplantation relation between the two-
port scattering matrices of the two isoscattering microwave
networks. It was shown that this relation allows us to
reconstruct the scattering matrix of each investigated net-
work using the scattering matrix of the other one.
Our experimental setup can be successfully used to

investigate properties of any quantum graph, also with
highly complicated topology (see, e.g., [18–20]). Here,
we showed that they are also relevant in the study of
‘‘abstract’’ but highly important mathematical problems
of the spectral analysis showing a great research potential
of quantum simulations based on microwave networks.
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FIG. 3 (color online). (a) The real and (b) imaginary parts of

the matrix element ~SðIÞ1;1ð�Þ of the transformed scattering matrix

(blue solid line) for the system with n ¼ 4 vertices. The obtained

results are compared to the scattering matrix elements SðIIÞ1;1 ð�Þ of
the graph with n ¼ 6 vertices (red dotted line). (c) The real and

(d) imaginary parts of the matrix element ~SðIÞ2;1ð�Þ of the trans-

formed scattering matrix (blue solid line) for the system
with n ¼ 4 vertices. The results are compared to the scattering

matrix element SðIIÞ21 ð�Þ of the graph with n ¼ 6 vertices (red

dotted line). The results are presented in the frequency range
0.01–1.7 GHz.
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Seifert, L. R. Wallenberg, and L. Samuelson, Nature
Mater. 3, 380 (2004).

[15] K. Heo et al., Nano Lett. 8, 4523 (2008).
[16] O. Hul, S. Bauch, P. Pakonski, N. Savytskyy, K.
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