
Disorder Strength and Field-Driven Ground State Domain Formation in Artificial Spin Ice:
Experiment, Simulation, and Theory

Zoe Budrikis,1,2,3,* J. P. Morgan,4 J. Akerman,4,5 A. Stein,6 Paolo Politi,2,7 S. Langridge,8

C. H. Marrows,4,† and R. L. Stamps3

1School of Physics, The University of Western Australia, 35 Stirling Highway, Crawley 6009, Australia
2Istituto dei Sistemi Complessi CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy

3SUPA School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, United Kingdom
4School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom

5Instituto de Sistemas Optoelectrónicos y Microtecnologı́a (ISOM), Universidad Politécnica de Madrid,
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Quenched disorder affects how nonequilibrium systems respond to driving. In the context of artificial

spin ice, an athermal system comprised of geometrically frustrated classical Ising spins with a twofold

degenerate ground state, we give experimental and numerical evidence of how such disorder washes out

edge effects and provide an estimate of disorder strength in the experimental system. We prove analyti-

cally that a sequence of applied fields with fixed amplitude is unable to drive the system to its ground state

from a saturated state. These results should be relevant for other systems where disorder does not change

the nature of the ground state.

DOI: 10.1103/PhysRevLett.109.037203 PACS numbers: 75.50.Lk, 75.10.Hk, 75.75.�c

Artificial spin ice [1–3] consists of nanofabricated arrays
of elongated magnetic dots that are small enough to be
single-domain, but large enough to be athermal. Each dot
can be represented by a macro Ising spin, whose dynamics
is governed by frustrated magnetostatic interactions and an
external magnetic field. Like other artificial systems [4–6],
artificial spin ice offers a setting in which to explore
athermal nonequilibrium dynamics, with the advantage
that its microscopic configurations are easier to measure
than those of, e.g., granular materials.

Understanding these dynamics is difficult as the study of
nonequilibrium systems lacks a key ingredient: the proba-
bility distribution of microstates, i.e., the Boltzmann factor,
which allows the determination of all relevant physical
quantities [7]. Furthermore, athermal systems are intrinsi-
cally strongly out of equilibrium, and the relevant distri-
bution function is not obtainable from perturbations of the
equilibrium distribution. Artificial spin ice is an experi-
mental example of such an athermal system, with
the additional ingredient of geometrical frustration.
Furthermore, it has been shown [8–15] that although tem-
perature is not relevant, randomness does enter via
quenched disorder, due to small unavoidable variations
during fabrication.

Previous studies have quantified disorder strength in
artificial spin ices [11–13,15], but relatively little has
been said about how it affects dynamics, especially in
square ices. In particular, ideal square ices have a well-
defined, twofold degenerate ground state [8,16] [GS; see

Fig. 1(a)], but this has proven unattainable in experimental
studies of field-driven demagnetization, which have
yielded states with only short-range GS correlations
[1,17,18]. Simulation studies of a nanopatterned supercon-
ductor ‘‘spin’’ ice suggest that disorder is partially respon-
sible [9], but its full role has not yet been elucidated.
In this Letter, we examine the extent to which disorder

can disrupt ordering processes in artificial spin ice. Our
argument is a specific example of a broader problem of
how disorder affects access to a set of degenerate states and
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FIG. 1 (color online). (a) A pure tiling of type 1 vertices gives
a GS configuration. The other GS is obtained by flipping all
spins. (b) One of four DPSs and the field direction used to obtain
it. (c) The 16 vertex configurations, grouped in order of increas-
ing energy.
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is also applicable to, e.g., antiferromagnetically coupled
magnetic dots with a distribution of switching barriers
[19–21]. Our results complement previous studies of how
disorder affects phase space [22,23].

We present experimental studies in which rotating field
protocols are used to drive dynamics in a square ice, in the
manner simulated in Ref. [24]. In those simulations, it was
shown that in ideal systems a constant-amplitude rotating
field can generate states with large domains of GS ordering
via orderly invasion processes. In our experiments, GS
domains are smaller than predicted, which new simulations
show is attributable to quenched disorder. We prove ana-
lytically that disorder blocks GS access in real systems for
any field protocol with constant amplitude, by forcing
multiple GS domains to nucleate.

An important related problem is that of how the basic
‘‘step’’ taken by the system as it moves through phase
space affects the accessibility of states: for example, in
Monte Carlo simulations of vertex models [25], single spin
flip dynamics can ‘‘freeze’’ in regions of phase space far
from the ground state, an issue not faced by loop-based
dynamics. Indeed, this problem is general, appearing also
in contexts such as domain wall creep dynamics [26]. In
this present Letter, we address the question of pathways to
the GS in the context of single spin flip dynamics, an
approach motivated by the stochastic nature of spin flips
in artificial spin ice, but leave open the possibility that
dynamics governed by global moves may be different.

As in Ref. [24], we study two array edge geometries. In
‘‘open edge’’ (‘‘closed edge’’) arrays, edge spins have an
odd (even) number of nearest neighbors. These geometries
are shown in the insets to Figs. 2(a) and 2(e). In perfect
systems, differences in coupling (of the order of nearest-
neighbor interactions) at array edges cause edge geometry

to ‘‘select’’ dynamics with distinct field dependence for the
two array types. We will see that disorder disrupts this.
Five nominally identical arrays of each edge type were

patterned on a single Si chip with electron beam lithogra-
phy, per Ref. [27]. Islands were nominally 85 by 280 nm
on a lattice of 400 nm constant, with a thin film structure
of Crð2 nmÞ=Permalloyð30 nmÞ=Alð2 nmÞ, forming mo-
ments of �106�B, with nearest-neighbor coupling of
�10 Oe. As is common in demagnetization studies
[18,28], a large in-plane field H ¼ 2 kOe was applied
along a diagonal symmetry axis to prepare a diagonally
polarized state [DPS; see Fig. 1(b)]. The field was then
reduced to a hold value Hh and the sample was rotated in-
plane. We studied hold fields at 22 Oe increments between
411 and 606 Oe. After hundreds of rotations, more than
enough to reach a predicted steady state [24], the field was
ramped to zero at a rate of �10 000 Oe=s (compared to a
rotation period of �30 ms). We have confirmed by simu-
lation that this ramp-down does not cause the demagneti-
zation effects seen for slow-ramp protocols [8,29], because
the field range over which nontrivial dynamics can occur,
Hmax �Hmin � 150 Oe, is crossed within a single rota-
tion. For large Hh values, the field angle at which ramp-
down starts influences the final configuration, as described
below, but its exact value is unimportant in general. For
each Hh, remanent states were imaged by MFM, which
shows a pole at each island end, indicated by the red-blue
contrast in Fig. 2, confirming that the islands are single-
domain.
Array configurations can be conveniently represented in

terms of vertices. Figure 1(c) shows the 16 possible vertex
configurations grouped into types based on energy [1]. The
GS is a chess-board tiling of type 1 vertices, and the DPS
that we use as an initial configuration is a uniform tiling of

433 Oe 476 Oe 520 Oe 563 Oe

(e) (f) (g) (h)

(a) (b) (c) (d)

FIG. 2 (color online). Magnetic force microscopy images of final states of open (a)–(d) and closed (e)–(h) arrays after rotation at
selected hold fields. Insets indicate the corresponding island moments for selected areas of the array. A GS domain is outlined in (g).
Images are false colored using the software package WSxM [41].
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one of the type 2 vertices. Dynamics on DPS or GS back-
grounds can be described in terms of the motion of type 3
vertices [16,24,30,31]. The population of type 1 vertices
serves as an indicator of the level of GS ordering [9,24].

Figures 2(a)–2(f) show example MFM images from the
Hh series, for open and closed edge arrays, respectively.
Key configurations are mapped schematically (insets) in
terms of dipole moments and vertex type. Note that images
for different Hh values are not all taken from the same
array. Average fractional vertex populations for each Hh

are tracked in Fig. 3(a). We make two general observations.
First, the population statistics and net magnetizations (not
shown) are almost identical for open and closed arrays for
all Hh, indicating that edge effects are suppressed, which
we show below is caused by disorder. Second, the maxi-
mum type 1 population, found at Hh ¼ 520 Oe, is signifi-
cantly reduced compared to the predictions of the ideal
model [24].

Examining the configurations attained, we see that for
Hh <Hmin � 410 Oe, the field does not affect the initial
DPS. For 410 Oe � Hh � 455 Oe, the configurations
at remanence consist of chains of reversed moments
on a background of the initial DPS, as seen in Figs. 2(a)
and 2(e). It is clear from the MFM that most chains are
nucleated in the bulk, presumably at sites with low switch-
ing barrier [9]. The chains are similar to those reported
previously in dc field experiments [11–13,15,31]. In those
experiments, they occur via bulk nucleation, cascading and
pinning under the influence of interactions and disorder.

As Hh is increased to 476 Oe, small GS domains form,
and mixed GS/DPS phases are found, as seen in Figs. 2(b)
and 2(f). Near 520 Oe, increasing numbers of moments are
reversed from the initial DPS, the magnetization ap-
proaches 0, and all four type 2 vertices reach similar
populations—the memory of the initial DPS is lost. The
GS domain size increases, and the type 1 populations reach
a maximum of 50%, as seen in Figs. 2(c), 2(g), and 3(a).
An example GS domain is outlined in Fig. 2(g). Domain

wall structures separating GS domains, similar to those
caused by thermal ordering [27], are also observed.
Increasing Hh further rapidly suppresses GS order, as

Zeeman energy dominates and DPS ordering that couples
to the field is preferred. Only moments with large switch-
ing barriers can pin; the rest align with the field. This is
evident in the increasingly polarized states observed in
Figs. 2(d) and 2(h). The magnetization direction is deter-
mined by the field direction at which ramp-down occurred.
We estimate Hmax to be 560 Oe; above this field, no
significant GS domains are found, and simulations indicate
that any GS ordering is picked up during ramp-down.
We now use numerical simulations to establish that the

above observations can be explained by quenched disorder
and to estimate its strength relative to other energies in the
system. In our simulations, the Ising spin i flips if the total
field acting on it, comprising the external field and dipolar
interactions with all other islands, exceeds the threshold

~h
ðiÞ
tot � m̂i <�hðiÞc ; (1)

where m̂i is a dimensionless unit vector along the spin

direction and hðiÞc is the island’s switching barrier, which in
a perfect system is the same for all islands. This threshold-
based model [8,11,12,32] has a cos� angular dependence
and is appropriate for describing the Zeeman-energy-
driven propagation of domain walls, such as occurs during
reversal of dots with dimensions similar to ours [33], in
which domain wall nucleation is assisted by the curling of
magnetization at island ends [28]. (For smaller dots,
Stoner-Wohlfarth switching [34,35] would be more realis-
tic.) Like other authors [11–13,15], we implement disorder

by taking the hðiÞc from a Gaussian distribution with stan-
dard deviation �; we show elsewhere that this type of
disorder behaves similarly to disorder in interactions
[36]. We work in reduced units where the nearest-neighbor
dipole coupling is 1.5 relative toM2=4��0 (M is the island
net moment) and the mean hc value is 11.25.
We simulate a protocol in which the field rotates with

constant amplitude h and angular step d� ¼ 0:01 radians
for 10 cycles, long enough to obtain a steady state. In line
with experiments, the field is then ramped down over half a
cycle to h ¼ 8, a field strength too low to induce dynamics.
At each field application, the system evolves by flipping
single spins according to criterion (1) until no further flips
are possible.
We find good agreement with experimental vertex pop-

ulations—in terms of general trends, peak n1 value, and
lack of dependence on edge geometry—when disorder is in
the ‘‘strong disorder regime’’ of Ref. [36]. For example,
Fig. 3(b) shows results for � ¼ 1:875, a distribution width
equal to 125% the nearest-neighbor coupling and large
enough to suppress edge effects. This value is in agreement
with the value of � ¼ 60 Oe, relative to a mean switching
field of 320 Oe, given by Pollard et al. [15], who studied
arrays similar to ours.

FIG. 3 (color online). Vertex populations vs hold field for
(a) experiment and (b) theory. Symbols represent vertex types
as shown in the legend, with open (closed) symbols for open
(closed) edge arrays. Each data point is the average over several
runs; error bars represent the standard error.
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Disorder in our simulations is an effective switching
dispersion that incorporates effects from disorder in
switching characteristics and interactions. As a point of
comparison, if there was no disorder in interactions and
island critical fields were directly proportional to their
volume, � ¼ 1:875 would correspond to a standard devia-
tion in island linear dimensions of 5%. Alternatively, if
disorder originated only from fluctuations in nearest-
neighbor interactions, the disorder would correspond to a
standard deviation of 40% [36]. We have been able to
measure the standard deviation in island dimension: the
value �1% indicates that both types of disorder are
present.

Having seen that a rotating field does not drive a dis-
ordered system from the DPS to a GS, we now ask: to what
extent is this inherent to the nonequilibrium driven dynam-
ics of a frustrated system, and what is the role played by
disorder? Here we prove that when disorder is present no
protocol with constant field amplitude can force a single
GS ordering to cover the array, if disorder is strong enough
or the system is large enough.

A key ingredient of our argument is the twofold degen-
eracy of the GS, which allows for separate GS domains to
form. Thus, we require that unlike in, e.g., the random field
Ising model (in which the GS becomes more accessible for
stronger disorder [37]), disorder should not change the
nature of the GS. This is true for switching field disorder.

We consider two mechanisms by which formation of
separate GS domains can occur. We calculate an upper
bound on the probability Pðnot blockedÞ that neither
mechanism operates; PðblockedÞ ¼ 1� Pðnot blockedÞ
is a lower bound on the probability the GS is blocked.
We outline the argument here, and give details as
Supplemental Material [38].

The first mechanism depends on the initial state being a
DPS. To drive a DPS to a GS, half the spins must be
flipped, and the spins of the DPS can be divided into two
groups based on their alignment with either GS. Suppose
one spin from each of the two groups is pinned and remains
always in its initial state, e.g., spins C andD in Fig. 1(b). A
single GS cannot contain both C and D in their initial
states, but a configuration with two GS domains can.

The GS is not blocked by pinning only if at least one of
the two groups contains no pinned spins. Then, the first
terms in the expression for Pðnot blockedÞ depend on the
probability, Ppin, of a spin being pinned—that is, the

probability the spin’s switching barrier is so high it cannot
flip, even in a maximally unfavorable local environment.
This depends on field strength h. Two limits are Ppin ! 1

as h ! 0 and Ppin ! 0 as h ! 1.

The second mechanism of GS blocking does not rely on
an initial DPS. If two spins that are antiparallel in the GS,
e.g., spins A and B in Fig. 1(a), are ‘‘loose’’ and always
align with the external field, then the GS is blocked. This
gives a second set of terms in the expression for

Pðnot blockedÞ. Ploose, the probability a spin aligns with
an external field even when its neighbors are GS ordered,
has the limits Ploose ! 1 as h ! 1 and Ploose ! 0
and h ! 0.
The probability that the GS is blocked is

PðblockedÞ ¼ 1� ½2ð1� PpinÞn=2 � ð1� PpinÞn�
� ½4ð1� PlooseÞn=2ð1� ð1� PlooseÞn=4Þ2
þ 4ð1� PlooseÞ3n=4ð1� ð1� PlooseÞn=4Þ
þ ð1� PlooseÞn�: (2)

The inset to Fig. 4(a) shows PðblockedÞ vs field strength,
for the system studied in simulations; PðblockedÞ> 65%
always. Figure 4 shows that the minimum of PðblockedÞ
grows rapidly with disorder strength and array size. In the
limit of an infinite system, finite probabilities of pinned and
loose spins lead to finite populations of spins in both GS
alignments, and the GS is necessarily blocked.
Because we have been conservative in our estimates of

Ppin and Ploose, these results are a lower bound on

PðblockedÞ. While large PðblockedÞ indicates the GS is
inaccessible, small PðblockedÞ does not mean it can be

FIG. 4 (color online). Minimum GS blocking probability vs
(a) disorder strength for arrays containing 400–1000 spins; and
(b) array size for disorder strengths from 1.0 to 2.0. Inset:
PðblockedÞ vs field strength for a 20� 20 array with a
Gaussian distribution of hc with standard deviation 1.875.
Numerical values are in the same reduced units used in the
rest of this Letter.
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reached: for example, ideal systems can jam [24]. Our
results apply to any field protocol with fixed field ampli-
tude, such as field protocols where the sense of rotation
alternates. An open problem is whether protocols with
varying field amplitude face similar blocking. Finally, we
have shown that although rotating fields do not attain the
GS, they do achieve a high level of GS ordering, pointing
to questions about interplay between disorder and optimi-
zation [37,39,40].
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