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Theoretical studies of localization, anomalous diffusion and ergodicity breaking require solving the

electronic structure of disordered systems. We use free probability to approximate the ensemble-averaged

density of states without exact diagonalization. We present an error analysis that quantifies the accuracy

using a generalized moment expansion, allowing us to distinguish between different approximations. We

identify an approximation that is accurate to the eighth moment across all noise strengths, and contrast this

with perturbation theory and isotropic entanglement theory.
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Disordered materials have long been of interest for their
unique physics such as localization [1,2], anomalous diffu-
sion [3,4] and ergodicity breaking [5]. Their properties have
been exploited for applications as diverse as quantum dots
[6,7], magnetic nanostructures [8], disordered metals [9,10],
and bulk heterojunction photovoltaics [11–13]. However,
conventional electronic structure theories require diagonal-
ization ofmany explicit sampled Hamiltonians, making such
calculations expensive. Alternatively, free probability theory
allows a powerful nonperturbative method for computing of
eigenvalues of sums of certain matrices without rediagonal-
izing the matrix sums [14]. This has been proposed as an
approximation for general random matrices [15]; however,
we are not aware of any rigorous study of its accuracy. This
motivates us to describe herein a general framework for
quantifying the error in terms of discrepancies in the mo-
ments of the probability distribution functions (PDFs).

Comparing two PDFs.—We propose to quantify the
deviation between two PDFs using moment expansions.
[16] These are widely used to describe deviations from
normality in the form of Gram–Charlier and Edgeworth
series [17,18]. The general case applies also to non-
Gaussian reference PDFs. For two PDFs wð�Þ and ~wð�Þ
with finite cumulants �1; �2; . . . and ~�1; ~�2; . . . , and mo-
ments �1; �2; . . . and ~�1; ~�2; . . . respectively, we can de-
fine a formal differential operator which transforms ~w
into w [17,19]:

wð�Þ ¼ exp

�X1
n¼1

�n � ~�n

n!

�
� d

d�

�
n
�
~wð�Þ: (1)

This operator is parameterized completely by the cumu-
lants of both distributions. The resulting Edgeworth series
is asymptotic and only conditionally convergent [20].

The first k for which the cumulants �k and ~�k differ then
allows us to define a degree to which the approximation
w � ~w is valid. Expanding the exponential and using the
well-known relationships between cumulants and mo-
ments allows us to state that if the first k� 1 cumulants
agree, but the kth cumulants differ, then

wð�Þ ¼ ~wð�Þ þ�k � ~�k

k!
ð�1Þk ~wðkÞð�Þ þOð ~wðkþ1ÞÞ: (2)

This series inherits the same asymptotic convergence
properties as the original Edgeworth series [20,21].
Nevertheless, it is sufficient to use the leading order cor-
rection solely to quantify the error incurred by approximat-
ing one PDF by another.
The free convolution.—We now take the PDFs to be

densities of states (DOSs) of random matrices. The DOS
of a random matrix X is defined using the eigenvalues

f�ðmÞ
n g of the M samples X1; . . . ; Xm; . . . ; XM by

�ðXÞð�Þ ¼ lim
M!1

1

M

XM
m¼1

1

N

XN
n¼1

�ð�� �ðmÞ
n Þ: (3)

To approximate DOSs with free probability, we split the
Hamiltonian

H ¼ Aþ B (4)

into two matrices A and B whose DOSs, �ðAÞ and �ðBÞ
respectively, can be determined easily. In general, it is
not possible to calculate the eigenvalues of H by adding
the eigenvalues of A and B together; the general problem is
complicated by A and B not commuting [22]. In contrast,
free probability tells us that for certain noncommuting
matrices A and B, the exact DOS becomes the free con-

volution Aaa B, i.e. �
ðHÞ � �ðAaaBÞ, a ‘‘sum’’ which can be
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calculated without exact diagonalization of H [23]. We
calculate the free convolution numerically by diagonaliz-
ing the free approximant [24]

Z ¼ AþQ�1BQ; (5)

where Q is a N � N random matrix of Haar measure. For
real symmetric matrices A and B it is sufficient to consider
orthogonal matrices Q, which can be generated from
the QR decomposition [25] of a Gaussian orthogonal
matrix [24]. (This can be generalized readily to unitary
and symplectic matrices for complex and quaternionic
Hamiltonians, respectively.) The similarity transformation
Q�1 �Q applies a random rotation to the basis of B with

respect to A. In the N ! 1 limit, the DOS �ðZÞ converges
to the free convolution Aaa B [14,26].

The moment expansion above provides an error analysis
via discrepancies between the kth moment of the exact

DOS, �ðHÞ
k , and the free approximant, �ðAaaBÞ

k . By defini-

tion, the exact moments are [27]

�ðHÞ
k ¼ �ðAþBÞ

k ¼ hðAþ BÞki; (6)

where hZi ¼ ETrðZÞ=N denotes the normalized expected
trace (NET) of the N � N matrix Z. Expanding the (non-
commutative) binomial produces a sum of joint moments
hAn1Bm1 � � �AnrBmriwith the positive integer exponents ns,
ms summing to

P
r
s¼1ðns þmsÞ ¼ k. The approximation of

freeness implies that the joint moments must obey, by
definition [28], relations of the form

0 ¼ h�r
s¼1ðAns � hAnsiÞðBms � hBmsiÞi (7a)

¼ h�r
s¼1A

nsBmsi þ lower order terms; (7b)

where the second equality results from the linearity of the

NET. Testing for �ðAþBÞ
k � �ðAaaBÞ

k then reduces to testing

whether each centered joint moment of the form in (7a) is
statistically nonzero. Enumerating all unique joint mo-
ments of degree k is equivalent to the combinatorics of
binary necklaces, which can be generated efficiently [29].
The procedure we have described ascribes a degree k

to the approximation �ðHÞ � �ðAaaBÞ given the splitting
H ¼ Aþ B. For each positive integer n, we generate all
unique centered joint moments of degree n, and test if they
are statistically nonzero. The lowest n for which there is at
least one such term is the degree of approximation k. This
is our main result.
Decomposition of the Anderson Hamiltonian.—As a

concrete example, we focus on the Anderson
Hamiltonian [30]

H ¼

h1 J

J h2
. .
.

. .
. . .

.
J

J hN

0
BBBBBBB@

1
CCCCCCCA
; (8)

where J is constant and the diagonal elements hi are
identically and independently distributed (iid) random var-
iables with PDF phð�Þ. This is a real, symmetric tridiago-
nal matrix with circulant (periodic) boundary conditions on
a one-dimensional chain. Unless otherwise stated, we as-
sume that hi are normally distributed with mean 0 and
variance �2. We note that �=J gives us a dimensionless
order parameter to quantify the strength of disorder.
So far, we have only required of the decomposition

scheme H ¼ Aþ B that �ðAÞ and �ðBÞ be easily comput-
able. Are certain choices intrinsically superior to others?
For the Anderson Hamiltonian, we consider two reason-
able partitioning schemes:

H ¼ A1 þ B1 ¼

h1

h2

h3

. .
.

0
BBBBBB@

1
CCCCCCAþ

0 J

J 0 J

J 0 . .
.

. .
. . .

.

0
BBBBBB@

1
CCCCCCA (9a)

H ¼ A2 þ B2 ¼

h1 J

J 0

h3 J

J 0

. .
.

0
BBBBBBBB@

1
CCCCCCCCA
þ

0

h2 J

J 0

h4 � � �
..
. . .

.

0
BBBBBBBBB@

1
CCCCCCCCCA
: (9b)

We refer to these as scheme I and II, respectively. In
scheme I, we have �A1

¼ ph since A1 is diagonal with
each nonzero matrix element being iid. B1 is simply J
multiplied by the adjacency matrix of a one-dimensional
chain, and therefore has eigenvalues �n ¼ 2J cosð2n�=NÞ

[31]. The DOS of B1 is �B1
ð�Þ ¼ P

N
n¼1 �ð�� �nÞ which

converges as N ! 1 to the arcsine distribution with PDF
pASð�Þ ¼ 1=ð� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4J2 � �2
p Þ on the interval [�2jJj, 2jJj]. In

scheme II, we have that �A2
¼ �B2

¼ �X where �X is the
DOS of
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X ¼ h1 J
J 0

� �
:

The matrix X has eigenvalues 	�ð�Þ ¼ h1ð�Þ=2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h21ð�Þ=4þ J2

q
and so

�Xð�Þ ¼
�
1þ J2

�2

�
ph

�
�� J2

�

�
: (10)

Numerical free convolution.—We now calculate the
free convolution Aaa B numerically by sampling the dis-
tributions of A and B and diagonalizing the free approx-

imant (5). The exact DOS �ðAþBÞ and free approximant

�ðAaaBÞ are plotted in Figs. 1(a)–1(c) for both schemes for
low, moderate and high noise regimes (�=J ¼ 0:1, 1, 10,
respectively). For scheme I, we observe excellent agree-

ment between �ðHÞ and �ðA1aaB1Þ across all values of �=J,
which is evident from visual inspection; in contrast,
scheme II shows variable quality of fit. We can understand
this difference using the procedure outlined above to ana-

lyze the accuracy of the approximations �ðHÞ � �ðA1aaB1Þ

and �ðHÞ � �ðA2aaB2Þ. For scheme I, the approximation (2)
is of degree k ¼ 8; the discrepancy lies solely in the term
hðA1B1Þ4i [32]. Free probability expects this term to vanish,
but its true value is nonzero. The matrix A1 weights each
path by a factor of h, while B1 weights each path by J and
requires a hop to an adjacent site. The explicit products of
matrix elements can then be expressed diagrammatically
with closed paths as shown in Fig. 2. Consequently, we can
write explicitly

hðA1B1Þ4i ¼ hhiJhi�1JhiJhiþ1Ji þ hhiJhiþ1JhiJhi�1Ji
þ hhiJhi�1JhiJhi�1Ji þ hhiJhiþ1JhiJhiþ1Ji

¼ 2J4EðhiÞ2Eðh2i Þ þ 2J4Eðh2i Þ2 ¼ 0þ 2J4�4;

(11)

where the second equality follows from the independence
of the hi’s. This explains why the agreement between the

free and exact PDFs is so good, as the leading order

correction is in the eighth derivative of �ðA1aaB1Þ with
coefficient 2�4J4=8! ¼ ð�JÞ4=20160. In contrast, scheme
II is correct only to degree k ¼ 4, where the discrepancy
lies in hA2

2B
2
2i. Free probability expects this to be equal to

hA2
2B

2
2i ¼ hA2

2ihB2
2i ¼ hX2i2 ¼ ðJ2 þ �2=2Þ2, whereas the

exact value of this term is J2ðJ2 þ �2Þ. Therefore, the error
is in the fourth derivative of �ðAaaBÞ with coefficient
ð��4=4Þ=4! ¼ ��4=96.
Analytic free convolution.—Free probability allows us

also to calculate the limiting distribution of �ðAaaBÞ in the
macroscopic limit N ! 1 and M ! 1, allowing the cost
of numerical sampling and matrix diagonalization to be
sidestepped entirely. The key tool is the R-transform
RðwÞ ¼ g�1ðwÞ � w�1 [23], where g�1 is defined implic-
itly via the Cauchy transform (i.e., its retarded Green
function)

w ¼ lim
	#0

Z
R

�ð�Þ
g�1ðwÞ � ð�þ i	Þd�: (12)

For freely independent A and B, the R transforms linearize

the free convolution, i.e. RðAaaBÞðwÞ ¼ RðAÞðwÞ þ RðBÞðwÞ,
and the PDF can be recovered from the Plemelj–Sokhotsky
inversion formula by

�ðAaaBÞð�Þ ¼ 1

�
Im½ðgðAaaBÞÞ�1ð�Þ� (13a)

gðAaaBÞðwÞ ¼ RðAaaBÞðwÞ þ w�1: (13b)

We apply this to scheme I with each iid hi following a

Wigner semicircle distribution with PDF pWð�Þ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� �2

p
=4� on the interval ½�2; 2�. (The analytic

calculation is considerably easier than for Gaussian

noise.) First, calculate the Green function GðA1ÞðzÞ ¼
ðz�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 4

p
Þ=2. Next, take the functional inverse

gðA1ÞðwÞ ¼ ðGðA1ÞÞ�1ðwÞ ¼ wþ 1=w. Subtracting 1=w

finally yields the R-transform RðAÞðwÞ ¼ w. Similarly

with �ðB1Þ ¼ pAS, we find its Cauchy transform

GðB1ÞðzÞ¼1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2�4J2

p
, its functional inverse gðB1ÞðwÞ¼

ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4J2w2

p Þ=w, and the R transform RðB1ÞðwÞ ¼ ð�1þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4J2w2

p Þ=w.

FIG. 1 (color online). Calculation of the DOS, �ð�Þ, of the
Hamiltonian H of (8) with M ¼ 5000 samples of 2000� 2000
matrices for (a) low, (b) moderate and (c) high noise (�=J ¼ 0:1,
1 and 10, respectively, with � ¼ 1). For each figure we show the
results of free convolution defined in scheme I (�ðA1aaB1Þ; black
solid line), scheme II (�ðA2aaB2Þ; green dashed line) and exact
diagonalization (�ðHÞ; red dotted line).

FIG. 2. Diagrammatic expansion of the term
hA1B1A1B1A1B1A1B1i in terms of allowed paths dictated by
the matrix elements of A1 and B1 of scheme I in (9a).
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To perform the free convolution analytically, we add the

R-transforms to get RðA1aaB1ÞðwÞ ¼ RðA1ÞðwÞ þ RðB1ÞðwÞ,
from which we obtain gðA1aaB1ÞðwÞ¼wþð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ4J2w2
p Þ=w.

The final steps are to calculate the functional inverse

ðgðA1aaB1ÞÞ�1 and take its imaginary part to obtain

�ðA1aaB1Þ. Unfortunately, ðgðA1aaB1ÞÞ�1 cannot be written in
a compact closed form; nevertheless, the inversion can be
calculated numerically. We present calculations of the
DOS as a function of noise strength �=J in Fig. 3, showing
again that the free convolution is an excellent approxima-
tion to the exact DOS.

Comparison with other approximations.—We compare
the free approximations to the results of standard second-
order matrix perturbation theory [33], as shown in Fig. 3.
Unsurprisingly, perturbation theory produces results that
vary strongly with �=J, and that the different series, based
on whether A is considered a perturbation of B or vice
versa, have different regimes of applicability. Furthermore,
it is clear even from visual inspection that the second
moment of the DOS calculated using second-order pertur-
bation theory is not always correct. In contrast, the free
convolution produces results with a more uniform level of
accuracy across the entire range of �=J, and that we have
at least the first three moments being correct [34].

It is also natural to ask what mean field theory, another
standard tool, would predict. Interestingly, the limiting
behavior of scheme I as N ! 1 is equivalent to both the
coherent potential approximation (CPA) [35–37] in con-
densed matter physics, and the Blue’s function formalism
in quantum chromodynamics for calculating one-particle
irreducible self-energies [38]. The breakdown in the CPA
in the term hðA1B1Þ4i is known [1,39]; however, to our
knowledge, the magnitude of the deviation was not ex-
plained. Our error analysis framework provides such a
quantitative explanation.

Finally, we discuss the predictions of isotropic entangle-
ment (IE) theory, which linearly interpolates the fourth

cumulant between the classical convolution �ðA�BÞð�Þ ¼R1
�1 �ðAÞð�Þ�ðBÞðx� �Þdx and the free convolution

�ðAaaBÞð�Þ [34,40]. Given the eigenvalues �A, �B of the

matrices A and B, the classical convolution �ðA�BÞð�Þ can
be computed from the eigenvalues of the random matrix
Zcl ¼ �A þ��1�B�, where � is a N � N random per-
mutation matrix. This compares with the free convolution
sampled from Z0 ¼ �A þQ�1�BQ, which has the same
eigenvalues as the free approximant (5) by orthogonal
invariance of the Haar measure of Q. As discussed pre-
viously, the lowest three moments of Z andH are identical;
this turns out to be true also for Zcl [34]. Therefore, IE
proposes to interpolate via the fourth cumulant, with inter-
polation parameter p defined as

p ¼ �ðHÞ
4 � �ðAaaBÞ

4

�ðA�BÞ
4 � �ðAaaBÞ

4

(14)

For scheme I, IE always favors the free convolution limit
(p ¼ 0) over the classical limit (p ¼ 1); this follows from

our previous analysis that �ðHÞ
4 ¼ �ðA1aaB1Þ

4 . In scheme II,
however, we observe the unexpected result that p is
always negative regardless of the noise strength �=J.

From our previous analysis, �ðA2þB2Þ
4 ��ðA2aaB2Þ

4 ¼��4=4.

Additionally, �ðA2�B2Þ
4 � �ðA2aaB2Þ

4 where the only discrep-

ancy lies is in the so-called departing term hA2B2A2B2i
[34,40]. This term contributes 0 to �ðA2aaB2Þ

4 but has value

hA2
2ihB2

2i ¼ ðJ2 þ �2=2Þ2 in �ðA2�B2Þ
4 , since for the classical

convolution, h�r
s¼1ðAns

2 B
ms

2 Þi¼hA
P

r

s¼1
ns

2 ihB
P

r

s¼1
ms

2 i. Thus,
p ¼ �2ð2ð�JÞ�2 þ 1Þ�2 which is manifestly negative.

In conclusion, the accuracy of approximations using the
free convolution depend crucially on the way the
Hamiltonian is partitioned. Scheme I describes an unex-
pectedly accurate approximation for the DOS of disordered
Hamiltonians for all system sizes N and noise strengths
�=J. Our error analysis explains why this approximation is
correct to degree 8, and also provides a general framework
for understanding the performance of other approxima-
tions. We expect our results to be generally applicable to
arbitrary Hamiltonians, and pave the way toward construct-
ing even more accurate approximations using free proba-
bility with rigorous error bars. Our results represent an
optimistic beginning to the use of powerful and highly
accurate nonperturbative methods for studying the elec-
tronic properties of disordered condensed matter systems
regardless of the strength of noise present. Thus, we expect
these methods to be especially useful for studying the
unique physics enabled by noise.
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FIG. 3 (color online). DOS, �ð�Þ, of the Hamiltonian (8) with
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