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Clarification of critical wetting with short-range forces by simulations has been hampered by the lack of

accurate methods to locate where the transition occurs. We solve this problem by developing an

anisotropic finite-size scaling approach and show that then the wetting transition is a ‘‘bulk’’ critical

phenomenon with order parameter exponent equal to zero. For the Ising model in two dimensions, known

exact results are straightforwardly reproduced. In three dimensions, it is shown that previous estimates for

the location of the transition need revision, but the conclusions about a slow crossover away from mean-

field behavior remain unaltered.
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Introduction.—When phase coexistence, e.g., as satu-
rated vapor coexisting with liquid, is possible for a system
exposed to a wall, the latter can be either partially or
completely wet [1–3]. In the former case, a liquid droplet
would meet the wall under a nonzero contact angle �; in the
latter case � ¼ 0, the wall is coated by a macroscopically
thick liquid layer, avoiding direct contact between vapor
and wall. Similar phenomena are ubiquitous in condensed
matter, e.g., for unmixed phases of fluid or solid mixtures,
isotropic-nematic coexistence of liquid crystals, etc. [1–3].
Varying control parameters, e.g., the temperature T, the
system may undergo a transition from partial to complete
wetting, where � ! 0; this transition can be of 1st or 2nd
order. The latter case is interpreted as a continuous unbind-
ing of a fluctuating interface from the wall. For short-range
forces between the particles and the wall, the theory of
critical wetting has given rise to a long-standing contro-
versy [4–12]. Computer simulations of suitable models
should be a tool to clarify this controversy, but it turns
out that this approach has also suffered from severe prob-
lems in this case. In the following, we briefly recall these
issues.

One needs to describe the critical singularity of the
surface excess free energy fs, which in a notation inspired
by standard bulk critical phenomena, is written as [1–3]

f
ðsingÞ
s =kBT¼jtj2��s ~FsðHjtj��sÞ; t¼1�T=Tw; H!0;

(1)

where kB � 1 is Boltzmann’s constant, Tw is the wetting
critical temperature, andH is the field conjugate to the bulk
order parameter (magnetic field for an Ising magnet,
chemical potential difference for a fluid, etc.). The scaling
function ~Fs need not be specified here. The critical expo-
nents �s and �s can be related to the exponent �k of the

correlation length �kð�k / t��k Þ of interfacial fluctuations
in the direction (s) parallel to the wall: 2��s¼ðd�1Þ�k,

and �s ¼ ð�k=2Þðdþ 1��kÞ ¼ ð�k=2Þðdþ 1Þ, d ¼ 2ð3Þ
being the dimensionality. Note that capillary wave descrip-
tions of the fluctuating interface imply that the exponent�k
describing the decay of interfacial correlations at t ¼ 0
vanishes [2]. From Eq. (1) one readily obtains the singular
behavior of surface excess order parameter [13], ms ¼
�ð@fs=@HÞT and susceptibility, �s ¼ �ð@2fs=@H2ÞT ,
namely, ms ¼ jtj�s, �s ¼ �kðd� 3Þ=2, and �s ¼ jtj��s ,

�s ¼ 2�k.
For d ¼ 2, the exact solution [14,15] verifies this de-

scription, yielding �k ¼ 2 (and hence �s ¼ 3, �s ¼ �1,
�s ¼ 4). One can also derive the correlation length de-
scribing interfacial fluctuations in the transverse direction,
�? / jtj��? , with �? ¼ 1. For d ¼ 3, an exact solution is
lacking, of course. Mean field theory yields [1,2] �k ¼ 1,
�s ¼ 2, �s ¼ 2, and �s ¼ 0 (i.e., logarithmic divergence,
the same holds for �?, i.e., �? ¼ 0).
Consideration of fluctuations around mean field theory,

however, shows that d ¼ 3 is a marginal case [4–6,9,10].
Renormalization group treatments relied on the interface
Hamiltonian [4–6,9,10] H ¼ R

d ~	½
2 ðr‘Þ2 þ Vð‘Þ�, with
~	 ¼ ðx; yÞ the coordinates parallel to the wall, ‘ð ~	Þ the
local distance of the interface from the wall, 
 the inter-
facial stiffness, and Vð‘Þ a short-ranged wall potential. The
prediction resulted that critical exponents are nonuniversal
and differ markedly from mean field theory. For the d ¼ 3

Ising model, the relation �k ¼ ð ffiffiffi
2

p � ffiffiffiffi
!

p Þ�2 leads to

�k � 3:7, since the value of the nonuniversal parameter

! is close to ! � 0:8 [16] throughout the regime of
interest, being ! ¼ kBT=4�
�

2
b, where �b is the bulk

correlation range. These results have been called into
question from two sides: (i) Monte Carlo simulations of
wetting for the Ising model failed to see clear deviations
from mean field theory [7]; (ii) theoretical arguments con-
vincingly proved that the starting point of the theory is too
simplified, since one needs to describe the wall-interface
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interaction by a nonlocal Hamiltonian [11,12,17,18].
Despite recent simulation evidence [19] for this assertion,
deviations from the mean field exponents should occur
which have not been seen.

One basic problem for simulations of critical wetting is,
however, that the existing work [7,8] could not study the
close vicinity of the transition, simply because the latter
could not be located with significant accuracy. While for
bulk critical phenomena finite-size scaling [20–22] pro-
vides a framework for the accurate estimation of critical
properties [23], a similar approach for wetting phenomena
has been lacking; it is the purpose of the present Letter to
fill this gap.

Finite-size scaling approach.—Equation (1) is less suit-
able as a basis for finite-size scaling than its bulk counter-
part: separating fs from the bulk requires a semi-infinite
system, while simulations require systems with finite linear
dimensions L, M (perpendicular and parallel to the sur-
face). To cope with this problem, we choose two equivalent
but ‘‘antisymmetric’’ walls: in an Ising context, a surface
magnetic field �jH1j acts at the layer n ¼ 1, and HL ¼
jH1j acts at the layer n ¼ L (we choose the lattice spacing
as length unit). Capillary condensationlike effects then are
avoided, and phase coexistence still occurs forH ¼ 0 [24].
Second, when linear dimensions L, M are varied, ratios
L=�?, M=�k need to change in the same way (cf. Fig. 1).

This means that a generalized aspect ratio L=M�?=�k ¼ C�,
or equivalently L�k=�?=M ¼ C, needs to be kept constant
[25,26], since at criticality the coarse-grained configura-
tions of the system (cf. Fig. 1) are self-similar on all length
scales.

We then observe that for partial wetting the interface is
bound to either the layer n ¼ 1 or to the layer n ¼ L, with
equal probability. Thus, in the limit L ! 1 for constant C

the bulk order parameter hjmji clearly is nonzero, namely
the spontaneous magnetization mb in the bulk, for an Ising
model. In the wet state, the interface is unbound from
either wall, it fluctuates around the midpoint position;
hence hjmji ! 0 for L ! 1. Consequently, we simply
take the total magnetization per spin (m) of our system
as order parameter density for the wetting transition. We
make the standard scaling ansatz [26] for the probability
distribution [PLMðmÞ], then

PLMðmÞ¼�
�=�k
k ~PðC;M=�k;m�

�=�k
k Þ; m! 0; �k !1;

(2)

where � is the order parameter exponent. Since the scaling
functions ~P, ~m, and ~� need not be specified, from Eq. (2)
we get

hjmji ¼
Z þ1

�1
dmjmjPLMðmÞ ¼ �

��=�k
k ~mðC;M=�kÞ; (3)

and the susceptibility becomes [23]

T�0 ¼ LMd�1ðhm2i � hjmji2Þ
¼ Md�1þ�?=�k�2�=�k ~�ðC;M=�kÞ: (4)

The relation T�0 ¼ M�=�k ~�ðC;M=�kÞ then just implies

the standard hyperscaling for anisotropic criticality [26],
�þ 2� ¼ ðd� 1Þ�k þ �?. On the other hand, the singu-

lar behavior of �0 in the thermodynamic limit (taken at
fixed C) must be compatible with the singularity caused by
the surface excess susceptibility �s, as derived above

�0 ¼ �s=L / M��?=�k�
2��k
k / M

2��k��?=�k
ðt¼0Þ : (5)

Now, using the above result, [2] �k ¼ 0 and equating the

powers ofM in Eqs. (4) and (5), we find d� 3� 2�=�k ¼
�2�?=�k, which implies � ¼ 0 both in d ¼ 2 and d ¼ 3
(remember �?=�k ¼ 1=2 in d ¼ 2 but �? ¼ 0 in d ¼ 3).
Of course, this result could have been guessed since
hjmji ¼ mb for T < Tw while hjmji ¼ 0 for T > Tw, in
the considered limit L ! 1 at fixed C. Second-order tran-
sitions with an exponent � ¼ 0 are rather unusual; for a
recent example see Jaubert et al. [27]. Another conse-
quence of � ¼ 0 is that the susceptibility maximum

T�max / Md�1þ�?=�k [Eq. (4)]. The result � ¼ 0 also im-
plies that the wetting transition can be located both in
d ¼ 2 and d ¼ 3 by finding intersections of the curves of
any moments (hjmjki, k ¼ 1; 2; . . . ) vs T (or H1, respec-
tively) for different L, but keeping C fixed.
Numerical tests.—Figure 2(a) plots hjmji vs T for the

d ¼ 2 Ising model and three choices of L for L2=M ¼ 9=8,
while Fig. 2(b) replots the data in scaled form. Data for
other moments as well as the cumulant U ¼ 1�
hm4i=ðhm2i2Þ scale similarly well [28], and the intersection
points are in full agreement with the exact value kBTw=J ¼
1:6111 (H1 ¼ 0:70) [14].

FIG. 1. Schematic description of the system geometry (for
d ¼ 2 dimensions) and a state slightly below the wetting tran-
sition temperature, such that both �k and �? are much larger

than the lattice spacing, and the coarse-grained interface be-
tween domains of different orientation is assumed to be bound to
the lower wall (double arrows indicate the orientation of the
magnetization). The choice of linear dimensions L, M, the
location of the competitive surface fields H1, and of the periodic
boundary conditions (p.b.c.) are indicated.
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Figure 3 refers to the d ¼ 3 Ising model, usingH1=J as a
control parameter at fixed T=J ¼ 4:0. A reasonably well-
defined intersection occurs for both hjmji [cf. Fig. 3(c)] and
the cumulant [cf. Fig. 3(a)] for H1w=J ¼ 0:585� 0:015,
clearly exceeding the value H1w=J ¼ 0:55� 0:01 sug-
gested earlier [7]. In this case, the intersections of hjmji
showmore systematic scatter. The cumulants can be scaled,

at least roughly, with the mean-field value �MF
k ¼ 1

[cf. Fig. 3(b)], confirming the earlier conclusion [7] that
critical wetting with short-range forces is mean-field-like,
at least if one does not approach the transition too closely. In
fact, the data for hjmji [Fig. 3(d)] already indicate crossover
towards a different critical behavior since hjmji cannot be
scaledwith�MF

k ¼ 1, but rather a (rough) scaling is possible

with an effective exponent �eff
k ¼ 2.

Figure 4 analyzes the susceptibility both in d ¼ 2 and in

d ¼ 3: indeed, the predictions�max / M3=2 (d ¼ 2) andM2

(d ¼ 3), that hold independently of the value of �k and the
estimate for the location of the transition, are nicely veri-

fied. The predictions for the position of themaximum,Tw �
Tmax / M�1=�k (�k ¼ 2, d ¼ 2) orH1w �H1max / M�1=�k

(¼ M�1 in the mean field regime) also are compatible with

the data. An interesting limit occurswhenL=
ffiffiffiffiffi
M

p
(ind ¼ 2)

or L= lnM (in d ¼ 3) tends to zero: then a crossover to the
interface localization transition occurs, which simply is a
transition belonging to the universality class of the (d� 1)
Ising model (it is properly defined taking M to infinity
keeping L finite [24,29,30]. Note that for large L it has a
mean field character, apart from a very narrow regime
around the critical point [30]). Although for L tending to
infinity the location of this transition converges to the wet-
ting transition, its (mean field) exponents are not at all
related to critical wetting [30].
So far, by determining the intersection points of the

moments of the order parameter and the cumulant, we
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FIG. 2 (color online). (a) Plot of hjmji vs T for L ¼ 18, 24 and
36, as indicated, obtained at fixed L2=M ¼ 9=8, and H1=J ¼
0:70. The vertical line indicates the location of the exactly
known [14] wetting transition. Curves connecting points are
drawn as guides to the eye only. (b) Scaling plot of hjmji vs
t
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M

p
, using the data of part (a). The vertical line highlights the

transition point (t ¼ 0). Note that no adjustable parameter occurs
there whatsoever.
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FIG. 4 (color online). (a) Log-log plot of kBT�
0
max vs M for

both d ¼ 2 at H1=J ¼ 0:70, L2=M ¼ 9=8, and d ¼ 3 at both
kBT=J ¼ 4:0, L= lnM ¼ 2:8854 and kBT=J ¼ 4:2, L= lnM ¼
3:246. The slopes�=�k ¼ 3=2ðd ¼ 2Þ and2ðd ¼ 3Þ are indicated.
(b) Plot of the location of the susceptibility maxima kBTw=J vs
M�1=�k (�k ¼ 2, d ¼ 2) and H1w=J vs. M�1 (�k ¼ 1, d ¼ 3,
inset). In the inset we used the same symbols as in (a) for
data taken at different temperatures. In all cases the (black)
diamonds show the location of the extrapolated values, namely
kBT=J ¼ 1:6111 (H1w=J ¼ 0:70, d ¼ 2), H1w=J ¼ 0:585
(kBT=J ¼ 4:0, d ¼ 3), and H1w=J ¼ 0:455 (kBT=J ¼ 4:2,
d ¼ 3). Error bars are not exceeding the size of the symbols.
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FIG. 3 (color online). (a) and (c) show plots of the cumulant
U ¼ 1� hm4i=ð3hm2i2Þ and hjmji vs H1=J, respectively. Data
obtained for a fixed value of C� ¼ L= lnM ¼ 2:8854 and differ-
ent lattice sizes, as indicated. (b) and (d) show scaling plot of U
and hjmji vs ðH1 �H1wÞM1=�k , obtained by using H1w=J ¼
0:585, �k ¼ 1 (b) and �k ¼ 2 (d), respectively. If we assign

the exponents in the reverse way in (b) and (d), the scatter in the
data points is distinctly larger.

PRL 109, 036101 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending
20 JULY 2012

036101-3



have evaluated the critical points for the wetting transition
in d ¼ 3 listed in Table I. In this way, we can address an
additional problem of great interest, namely the wetting
behavior of the Ising model near bulk criticality. In fact, for
a second-order wetting transition one has that

H1w / ðTcb � TÞ�1 ; (6)

where �1 is a surface critical exponent [31]. In mean-field
theory, supposed to be exact for d � 4, one has �1 ¼ 1=2.
On the other hand, in d ¼ 2 the exact solution [14,15]
implies �1 ¼ 1=2, in full agreement with our numerical
data [28] (not shown here for the sake of space). But, in
d ¼ 3 the exponent is only know approximately from
numerical data, e.g., �1 ’ 0:45ð3Þ [8]. Furthermore, by
using a scaling relationship between �1 and the critical
exponent of the magnetization of the layer in contact to the
wall, i.e., m1 / t�1 [31], one obtains �1 ’ 0:48ð3Þ, by
using both the numerical result �1 ’ 0:78 [32] and a
field-theoretical calculation �1 ’ 0:8 [31]. Our results
(cf. Table I) suggest a somewhat larger effective exponent
�eff

1 ’ 0:60ð5Þ, but presumably one needs to obtain data
closer to Tcb for a realiable estimate.

Concluding remarks.—The framework of finite-size
scaling, that is a very powerful tool [22,23] for the study
of bulk critical phenomena, has been extended to critical
wetting. In d ¼ 2, it works straightforwardly for the Ising
model, and can yield useful results also for other models
(e.g., the Blume-Capel model [28]). In d ¼ 3, we find
previous estimates [8] for the location of the wetting
transition to be rather inaccurate, but we confirm the
mean-field like critical behavior (except for a very narrow
region around the wetting transition, which will require
much larger linear dimensions than were accessible in our
study). We expect that the present approach will allow a
new look on this long-standing problem, including also
further experimental work [3,33].

One of us (E. V.A.) received support from the
Schwerpunkt für Rechnergestützte Forschungsmethoden
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