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From numerical simulation and analytical modeling it is shown that fast ions can resonate with plasma

waves at fractional values of the particle drift-orbit transit frequency when the plasma wave amplitude is

sufficiently large. The fractional resonances, which are caused by a nonlinear interaction between the

particle orbit and the wave, give rise to an increased density of resonances in phase space which reduces

the threshold for stochastic transport. The effects of the fractional resonances on spatial and energy

transport are illustrated for an energetic particle geodesic acoustic mode but they apply equally well to

other types of MHD activity.
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Resonant interactions between waves and particles are
ubiquitous in the physical world. Resonances between
waves and drift-orbit transit frequencies of fast particles
in magnetized plasmas play an important role in fast-ion
transport and mode excitation. The well known linear
resonance condition in tokamaks between a wave with
frequency ! and the particle poloidal drift-orbit transit
frequency, !t, is given by ! ¼ p!t þ n!� with n the

toroidal mode number of the wave,!� the toroidal transit

frequency, and p the bounce harmonic number which is
an integer in this expression [1–3]. In this Letter, however,
we show that resonances between waves and particles can
also occur when p is fractional. This increases the number
of available wave-particle resonances significantly, and
we explore the effects of fractional resonances on fast-ion
transport. Although fractional resonances in nonlinear
plasma media have been noticed previously [4,5], this
Letter is the first to show that fractional resonances can
cause particle losses in a magnetic confinement device.
The fractional wave-particle resonances were first found
in simulations of particles interacting with an energetic
particle geodesic acoustic mode (E-GAM) [6], and they
can be explained with a theoretical model presented in
this Letter. The fractional resonances are not restricted to
E-GAMs but they also appear when other MHD activity is
present such as Alfvén eigenmodes at realistic mode
amplitudes.

Wave-particle interactions can be studied in detail for
the E-GAM because it is a global toroidally symmetric
(n ¼ 0) electrostatic mode with mode frequencies in the
range of 10 to 30 kHz. It can be excited to large ampli-
tudes: density fluctuations of ~n=n � 10% have been
found experimentally [7] and can expel large numbers
of fast ions. In accordance with Ref. [6] we have modeled
the E-GAM as a time-varying electrostatic potential
[Fig. 1(a)] which is a flux function. From this potential

the radial electric field in the plasma was obtained
[Fig. 1(d)]. The magnitude of the potential in the plasma
center, 5 kV, was obtained by comparing the measured
density fluctuations with the ones obtained from the dis-
placement induced by the mode [7].
The full orbit following code SPIRAL [8], which calcu-

lates single particle orbits in toroidal geometry by solving
the Lorentz equations, was used to calculate particle tra-
jectories in the plasma in the presence of the E-GAM.
Periodic excursions of the particle orbit and energy were
found under the influence of a 15 kHz E-GAM with a
central electrical potential of 5 kV as shown in Fig. 1 for
a 50 keV deuteron launched on a passing orbit. Initially, the
particle gains energy from the mode until its orbit becomes
so large that the phase between the mode changes and the
particle loses energy to the mode until it returns to its initial
position and the whole process repeats itself.
In order to determine the resonances between the poloi-

dal transit frequencies of the particles and a 15 kHz
E-GAM we have launched a number of deuterons with
energies between 5 and 150 keV with an initial pitch
(vk=v) of 0.5 at a major radius of 2.02 m at the midplane.

The selected energy range gives poloidal transit frequen-
cies between 4 and 40 kHz. For each particle the maximum
and minimum energy excursion was determined and plot-
ted against the initial transit frequency for a number of
values of the central electrical potential as shown in Fig. 2.
At the lowest mode amplitude (Vcentral ¼ 0:005 kVwhich

is 0.1% of typical E-GAM amplitudes) only the linear
p ¼ 1, 2, and 3 resonances are visible. When the mode
amplitude is increased toVcentral ¼ 0:5 kV several fractional
resonances appear between the p ¼ 1 and 2 resonances
while at 30 kHz the 1=2 resonance appears. The increased
mode amplitude also broadens the resonances. This can be
explained by the large excursions that the particle makes
at those mode amplitudes. The time-averaged bounce
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period over one energy excursion cycle is now resonant
with the mode frequency. At a central potential of 1.25 kV
the threshold for resonance overlap between the linear
and fractional resonances is passed as can be inferred
from the spikes appearing in the energy traces near the
the linear resonances. Finally, at Vcentral ¼ 5 kV, the ex-
perimental value of the central potential, the orbits in
the frequency interval up to the p ¼ 1 resonance have
become fully stochastic due to resonance overlap while
at higher frequencies additional new subharmonic reso-
nances have appeared.

The fractional resonances found in the simulations
can be understood by writing down the Hamiltonian,
H ¼ "þ e��, of a charged particle with charge e, and
kinetic energy, ", in a time-varying electrical potential:
�� ¼ �0 sinð!t� krrÞ with ! the mode frequency and
kr its wave number. Resonances correspond to secular
behavior and are obtained when hdH=dti � 0with h� � �i ¼
1
T

R
T
0 � � �dt and T the fast time scale. The unperturbed

particle position is given by r ¼ r0 þ �0 with r0 the drift
center and �0 the drift-orbit radius, and its radial drift
velocity is _�0 ¼ vdr ¼ vd sinð�Þ. The angle coordinate, �,

and particle transit frequency, _� ¼ !t, are both functions of
particle energy, pitch, and drift center. The mode induces a
perturbation to the energy, " ¼ "0 þ �", and drift center,
rc ¼ r0 þ �r, whereby the effects in energy dominate over
the change in drift-orbit center. The change of energy in
time, given by � _" ¼ vdre�E (�E is the electric field asso-
ciated with the potential ��), can be cast

� _" ¼ krvd0e�0

2
sin½�0 � ð!t� krrÞ�;

where the� sign accounts for the fact that the mode forms
beat waves with the particle transit frequency at the
sum and difference frequency. The change of energy over
time

�" ¼ krvd0e�0

2

cos½�0 � ð!t� krrÞ� � cosð�krrÞ
!t0 �!

can be obtained from a simple integration over time and
by using the leading term of the particle transit frequency:
_�0 ¼ !t0. The next step is to expand the perturbed particle
transit frequency as _� ¼ !t0 þ ðd"!t0Þ�"þ ðdr!t0Þ�r
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FIG. 2. Minimum and maximum particle energy excursion as a
function of the initial transit frequency for various values of the
electrical potential of the E-GAM. (a) At 0.05 kVonly the linear
resonances are present. (b) At 0.5 kV fractional resonances
appear. (c) At 1.25 keV the threshold for mode overlap between
linear and fractional resonances is passed, while (d) at 5 keV the
region up to the fundamental resonance has become stochastic
and subharmonic resonances are developing strongly. Integer
and a number of fractional resonances are indicated.
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FIG. 1 (color online). (a) E-GAM potential. (b) Energy excur-
sion of a 50 keV deuteron launched at R¼2:02m and Z¼0:0m,
and at a pitch of 0.5, as a function of time in the presence of a
15 kHz E-GAM. The particle orbit during one energy cycle
(0.33 ms) (c) without and (d) with the E-GAM present. Black
(orange online) line: full orbit; light gray (blue online) line:
guiding center.
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(where dxy � dy=dx). Integrating this expression with time
gives �0 ¼ !t0t for the first term and �� ¼ d"!t0

R
�"dt

for the second term while the third term is omitted because
�r is small. In a similar manner the change in the drift-orbit
radius is calculated as _� ¼ vd sinð�Þ ¼ ½vd0 þ ðd"vd0Þ�"
þðdrvd0Þ�r� sinð�0 þ ��Þ with _� ¼ _�0 þ � _�, where _�0 ¼
vd0 sinð�0Þ and � _� ¼ ½ðd"vd0Þ�"þ ðdrvd0Þ�r� sinð�0Þþ
vd0 cosð�0Þ��. Integrating over time gives �0 ¼
�vd0 cosð�0Þ=!t0, while �� is evaluated as

�� ¼ X7

i¼2

zi cosð�iÞ; (1)

where zi and �i are given in Table I. Wave-particle reso-
nances are now obtained from hdH=dti¼!e�0Re

hei½!t�krðrcþ�0þ��Þ�i�0. The terms with �0 and �� contain
cosine functions so we can use the Jacobi-Anger identity
to express hdH=dti as the product of Bessel functions (with
c ¼ !t� krðrc þ �0 þ ��Þ),

eic ¼ X
j;k;l;m;n;p;q

ijþ2ðkþlþqÞJjðz1ÞJkðz2ÞJlðz3ÞJmðz4ÞJnðz5ÞJpðz6ÞJqðz7Þ

� eifðkþl�m�n�pþqÞkrrþ½ðjþlþmþ2ðpþqÞÞ!t0þðkþl�mþ1Þ!�t�krrcg; (2)

where we have made use of the fact that kþ l�m� n�
pþ q ¼ 0, which must hold for the spatial part when the
time average of this expression is nonzero. In a similar way
the temporal part of Eq. (2) should be zero at the resonance,
so we get

!

!t0
¼ � jþ lþmþ 2ðpþ qÞ

ðkþ l�mþ 1Þ : (3)

From this expression we can immediately see that a multi-
tude of fractional resonances between the mode frequency,
!, and the initial particle transit frequency, !t0, are ob-
tained with appropriate choices of the indices j, k, l, m, p,
and q. The linear resonance condition is recoveredwhen the
potential, �, is vanishingly small and therefore k, l, m, p,
and q are zero.

It is interesting to note the analogy between the fractional
resonances and resonant heating below the cyclotron fre-
quency as described in Refs. [9,10]. In the cyclotron case the
heating, �Wc ¼ v?e�E?, is caused by the product of the
perpendicular velocity, v?, and perpendicular electric field,
�E? while the cyclotron frequency, !c, is constant. In the
fractional resonances case the heating is given by � _" ¼
vdre�E, where vdr plays the same role as v? in the cyclo-
tron case, and the electric field, �E, is equivalent to �E?.
The particle transit frequency, !t, plays a similar role as!c

but !t depends on the drift velocity. Another difference
between the cyclotron and fractional resonances case is
that the subharmonic resonances appear at frequencies

below the fundamental cyclotron resonance while in the
fractional resonances case the subharmonic resonances
appear above the fundamental resonance [Fig. 2(a)].
The fractional resonances increase the resonance den-

sity in phase space as shown in Fig. 3. This can lead to

TABLE I. Coefficients used in Eqs. (1) and (2).

i zi �i index

1 � vd0

!t0
!t0t j

2
�
krvd0e�

4

��
v0
d" � vd0!

0
t"

!t0

��
4!2�28!2

t0

ð4!2
t0
�!2Þð!2

t0
�!2Þ

�
krr k

3, 4
�
krvd0e�

4

��
v0
d" � vd0!

0
t"

!t0

��
2

ð!2
t0
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�
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5
�
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0
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FIG. 3 (color online). Energy-pitch phase space with linear
[solid (green online) line] and a small number of fractional
resonances [dashed (red online) line] shown. The locations of
the three ensembles that were used to investigate the effects of
the fundamental resonance, the half resonance, and nonreso-
nance on particle transport are indicated with the black squares.
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increased transport in two ways: (i) stochastic transport can
occur when the fractional and linear resonances overlap,
while (ii) resonant transport can occur when the fractional
resonances are well separated.

Stochastic transport occurs at sufficiently high mode
amplitudes as can be seen in Fig. 2(d) where a stochastic
region is formed below 18 kHz in the region where the
linear resonances were located. The appearance of the frac-
tional resonances between the linear resonances decreases
the threshold for stochastic orbits. Another important ob-
servation that can be made from Fig. 2(d) is that when the
region has become stochastic the particles gainmore energy
from the mode than that they lose to the mode which leads
to a damping of the mode. In carefully designed experi-
ments with cocurrent and countercurrent beam injection
this damping may be observed experimentally.

Resonant transport was studied in simulations with three
populations of 10 000 particles each with their guiding

centers at R, Z ¼ ð2:02; 0:0Þ m, an energy of 50 keV, and
pitches of 0.40, 0.73, and 0.88, respectively, so that the
particles are resonant with the fundamental resonance,
resonant with the half resonance, and nonresonant, respec-
tively, as indicated in Fig. 3 by the black squares. After the
particles were distributed uniformly over the equilibrium
drift orbit, the E-GAMwas switched on for 0.27 ms and the
spread in guiding centers relative to the unperturbed drift
orbit and the spread in energy were calculated as a function
of mode amplitude (Fig. 4).
From Fig. 4 it can be seen that the particles that were

launched at the fundamental resonance are affected by very
low wave amplitudes, which spread them in space and
energy. The particle population at the half resonance is
only affected when the mode amplitude reaches a threshold
of 1 kVwhich is 20% of the amplitude seen in experiments.
The nonresonant population is hardly affected by the
mode. These results show clearly that the inclusion of the
fractional resonances enhances the fast-ion transport and a
larger part of phase space is affected by the mode than only
the regions around the linear resonances.
Preliminary evidence of fast-ion transport at fractional

harmonics of the mode frequency is observed during strong
E-GAM activity in the DIII-D tokamak where the E-GAM
was strongly excited during the current ramp-up phase with
equal amounts (2.2 MW) of cocurrent and countercurrent
neutral beam injection (NBI) similar to the experiments
reported in Ref. [7] whereby the E-GAM is strongly driven
by the countercurrent NBI (particle energy: 81 keV) while
the cocurrent beam (particle energy: 76 keV) is injected in a
region of phase space where the p ¼ 1=2 resonance is
residing (Fig. 3). In Fig. 5 the spectrum of E-GAM oscil-
lations asmeasuredwith aMirnov coil is comparedwith the
spectrumof losses to a fast-ion detector (FILD) [11]. A peak
in the loss spectrum occurs at the half harmonic that does
not appear in the instabilities spectrum which is consistent

0 2 4
EGAM Potential (kV)

1 3 5

S
td

. D
ev

. f
ro

m
 In

it
ia

l E
n

er
g

y 
(k

eV
)

1

2

4

0

3

(a)

0

2

4

6

8

10

S
td

. D
ev

. f
ro

m
 D

ri
ft

 O
rb

it
 (

cm
)

Fundamental resonance

Half-in
teger resonance

Non-resonant

(b)

Fundamental resonance

Half-
integer r

esonance

Non-resonant

FIG. 4. Standard deviation of the (a) radial and (b) energy
excursion of an ensemble of ions as a function of E-GAM
mode amplitude for the fundamental resonance, the half reso-
nance, and nonresonant particles.

10 30 50
Frequency (kHz)
20 40

N
or

m
al

iz
ed

 P
ow

er
 (a

u)

0.2

0.6

1.0

0.0

0.4

0.8

Magnetics
FILD

EGAM

1/2

2

DIII−D pulse: 142121

FIG. 5 (color online). Magnetic [dashed (black) line] and
FILD [solid (red online) line] spectrum. Losses at half the
E-GAM frequency are only observed with FILD.

PRL 109, 035003 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending
20 JULY 2012

035003-4



with the theoretical prediction that _� should contain frac-
tional harmonic oscillations at large mode amplitude.

From numerical simulation and analytical modeling it
was found that fast ions can resonate with plasma waves at
fractional values of the particle drift-orbit transit frequency
when the plasma wave amplitude is sufficiently large. The
fractional resonances, which are caused by a nonlinear
interaction between the particle orbit and the wave, give
rise to an increased density of resonances in phase space
which reduces the threshold for stochastic fast-ion
transport.
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