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We put in evidence the unexpected behavior of Leidenfrost droplets at the later stage of their

evaporation. We predict and observe that, below a critical size Rl, the droplets spontaneously take off

due to the breakdown of the lubrication regime. We establish the theoretical relation between the droplet

radius and its elevation. We predict that the vapor layer thickness increases when the droplets become

smaller. A satisfactory agreement is found between the model and the experimental results performed on

droplets of water and of ethanol.
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The name of J.G. Leidenfrost (1715-1794) is still remem-
bered because he was the first to publish the observation
that a puddle of water dropped on a very hot surface divides
into droplets, which stand each above the surface and slowly
evaporate. At the end of the process, he noticed [1]:
‘‘. . .before the whole drop disappears. Which at last exceed-
ingly diminished so that it can hardly any more be seen, with
an audible crack, which with the ears one easily hears, it
finishes its existence, and in the spoon [making the hot
surface] it leaves a small particle of earth. . .’’

Over the years, the Leidenfrost phenomenon has attracted
the attention of many investigators, see for instance [2–8],
but seemingly little interest has been paid to the observation
by Leidenfrost of the final stage of the droplet evaporation,
in particular, what happens when the droplets become very
small before finally disappearing. We investigate in this
Letter theoretically and experimentally the final regime of
the Leidenfrost droplets. We show that when the droplets
become smaller than a well defined radius, they suddenly
take off due to the breakdown of the classical Leidenfrost
lubrication regime. They thus reach an elevation which is
much higher than their radius.

Let us consider first an almost spherical drop of volatile
liquid with radius R and mass M standing slightly above a
hot flat surface with a vapor film of thickness h in between.
Let l be the horizontal width of this film, this length will
be related to the other physical parameters of the problem.

Our estimate will rely on the fact that, in a range of
parameters, the horizontal length scale l is much larger
than h. Both l and h are less than R, the radius of the
droplet. Furthermore, we shall consider a range of parame-
ters where the vapor pressure in the film is negligible
compared to Laplace’s capillary pressure. Therefore the
droplet remains almost exactly spherical in this regime.
This will yield the condition (3) derived below, valid
under the constraint h � R. This condition happens to be

impossible to satisfy if the droplet becomes too small, that
is if its weight is too small to balance the upward pressure
in the gap between the hot plate and the droplet. Therefore,
it is natural to guess that, when this happens, the droplet
lifts off the plate. This defines a second regime where
h � R. The scaling laws for this second regime are given
in this Letter and we show that the droplet reaches a higher
elevation as it gets smaller and smaller by evaporating.
Energy conservation during the evaporation process of

the droplet (namely Stefan’s boundary condition on the
liquid-vapor interface), which we assume to be just below
the boiling temperature, and Fourier law for the heat trans-
fer in the film yield the order of magnitude for the vertical
velocity of vapor w near the surface of the droplet:

w ¼ ��T

hL�v

: (1)

Here �T ¼ T1 � T0 is the temperature difference between
the droplet and the hot plate, �v is the mass density of the
vapor, � the heat conductivity in the vapor, and L the latent
heat of evaporation per unit mass. Lubrication theory, valid
if l � h, yields the magnitude of the horizontal velocity u
in terms of the vertical velocity: u ¼ lw

h , where l is the

horizontal extent of the vapor film. From the Poiseuille
relation, such a flow is driven by a horizontal pressure
gradient scaling as �P=l� �u=h2. Therefore, the typical
gradient is of order �P=l� wl�=h3. Using now Eq. (1) we
find (replacing sign � by ¼ for readability):

�P ¼ �l2
��T

h4L�v

: (2)

The liquid drop is at mechanical equilibrium when
Mg ¼ �Pl2 namely when its weight is equal to the vertical
component of the force due to viscous pressure in the gap
between the droplet and the hot plate. Note that the con-
tribution of the viscous stress to this vertical force is of the
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same order of magnitude as the one of hydrostatic pressure.
Therefore we find using the mechanical equilibrium
relation given above that:

l4

h4
¼ L�vMg

��T�
: (3)

As stressed above, the lubrication approximation becomes
invalid when h� l. From the M dependence of the right-
hand side of Eq. (3), we find that the lubrication approxima-
tion becomes invalid if the radius of the droplet is less than
a critical drop radius Rl defined by the condition l ¼ h.
The breakdown of the lubrication approximation will then
occur for:

Rl ¼
�
��T�

gL�v�l

�
1=3

: (4)

Therefore one expects that, as R gets smaller than Rl, the
droplet takes off from the hot plate. The range of values of
h� R� Rl is beyond reach of simple order of magnitude
estimates and its analysis requires a solution of the full set
of equations for the multiphase Stokes flow and the heat
transfer model. Let us consider the asymptotic regime
where R is much less than Rl, where one expects the
droplet to lift well above the hot plate (h � R). In this
regime, the equilibrium elevation of the droplet is reached
when the gravity force is balanced by the dipolar compo-
nent of the velocity field generated by the evaporation from
the droplet surface and by its image with respect to the
horizontal plane. This dipolar approximation is correct for
h � R. Let T1 the temperature at infinity and T0 the
temperature of the droplet. The temperature field satisfying
Laplace’s equation around an isolated droplet reads:
TðrÞ ¼ T1 þ ðT0 � T1ÞR=r. The origin of the spherical
coordinates (r ¼ 0) is taken at the center of the droplet.
Let us consider now the temperature due to the image with
the temperature field of order Tim � ðT1 � T0ÞR=2h near
the physical droplet, with a nearly uniform vertical
gradient. As justified below, in the limit of large h the net
vertical heat flux is of order of the derivative of Tim with
respect to h, namely ðT1 � T0ÞR=h2. Using Stefan’s law we
find the order of magnitude of the net vertical velocity in
the vapor near the droplet reads:

�

L�v

ðT1 � T0ÞR
h2

: (5)

This relation is similar to Eq. (1), but with �T=h
replaced by ðT1 � T0ÞR=h2. Multiplying this velocity by
�R, as in the Stokes drag law, we obtain the vertical force
on the droplet. Balancing this force with gravity we find
that, in the limit h � R (namely for R � Rl), the dimen-
sionless elevation of the droplet at equilibrium h� ¼ h=R
should scale as:

h� ¼ ðRl=RÞ3=2: (6)

Before going further, we have to analyze the constraint
on the pressure in the gap: it must be negligible compared
to the Laplace pressure in the droplet to ensure that it
remains close to its spherical shape everywhere. It can be

shown [9] that l� ffiffiffiffiffiffiffi
Rh

p
is a fair estimate of the horizontal

extent of the layer for which the viscous pressure contrib-
utes significantly to the vertical force. Using Eq. (2) and
this relation between l, R, and h, the pressure induced by

the Poiseuille flow in the gap is found to be of order �p ¼
g�l

RR3
l

h3
. It crosses the order of magnitude of Laplace’s

pressure inside the droplet when �P ¼ �
R . This happens

when the radius becomes of order Ri ¼ ð �
g�l

Þ2=7R3=7
l . This

relation is obtained using the above geometrical relation

for l and Eq. (3) reformulated as h=l ¼ ðRl=RÞ3=4. This
assumes that the capillary length ð �

g�l
Þ1=2 is much larger

than Rl, since otherwise the cross over would happen in a
range of values of R smaller than Rl: this is impossible
because Ri was derived under the assumption that the
lubrication approximation holds in the gap between the
sphere and the hot plate. The condition Ri � Rl is fulfilled
in the experiments described below, but there could be
other situations at stake for which this condition may not
be fulfilled. This also gives us the opportunity to address
another feature of our experiments, namely, the difference
of behavior between droplets of water and of ethanol. Since
the quantity Ri=Rl is independent of the radius of the
droplet, but depends on the properties of the liquid and
its vapor, the behavior of Leidenfrost droplets is not unique
to rescalings, because it depends on a dimensionless ratio
with a different value depending on the liquid used. Let us
also notice that for radii larger than Ri, the shape of the
droplet becomes rather complex, because it depends on
the (large) deformation of the droplet surface due to the
Poiseuille pressure inside the vapor gap [10,11]. This
happens in a range of parameters outside of this study.
Therefore, we focus on the range of parameters such that
Rl � R � Ri. In this range, using Eq. (3) and the geo-
metrical relation for l, the dimensionless height satisfies:

h� ¼ ðRl=RÞ3=2: (7)

For usual liquids the value of Ri is a few hundred
microns. It is therefore worth mentioning that this predic-
tion is qualitatively different and even opposed to the one
commonly used for which the vapor thickness is expected
to decrease when the radius of the droplet decreases.
The previous relations rely on the assumption that the

temperature field between the drop and the substrate (the
plane located at z ¼ 0) is a solution of Laplace’s equation.
This approximation is valid in the limit in which the
convective heat flux is negligible compared to the diffusive
flux (small Peclet number limit) and it holds in our experi-
ments. From the image solution of potential problems, the
temperature field between the drop and the hot plate is
the same as the one between two spheres at temperatures
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T0 and 2T1 � T0 and separated by a distance 2h. Laplace’s
equation for two spheres was solved 100 years ago by
Jeffery [12] thanks to bispherical coordinates. We have
numerically recovered the expected dependence of the tem-
perature gradient in the limits of large h=R and small h=R.
As given above by scaling arguments, they, respectively,
read rT ��TR=h2 and rT ��T=h.

Considering a water drop on a hot plate at 400 �C the
numerical estimate of the critical radius is Rl ’ 19 �m.
To our knowledge, no quantitative experiment has been
done at such small sizes. We therefore decided to perform
experiments on ultradistilled water and ethanol drops to
verify the scaling laws derived just above. The experimental
setup is depicted in Fig. 1. A cloud of submillimetric
droplets is rained on a silicon substrate kept at a controlled
temperature T1. The two upper blocks are necessary to
reduce the number of drops falling in the field of the camera.
They are also useful for the thermal stability of the system.
Experiments are performed under a laminar air flow protec-
tion in order to prevent dust contamination. A high-speed
camera, at a frame rate of 2000 frames per second, was used
to record several evaporation take off processes. An image
analysis allowed us to measure the radius and elevation of
droplets as a function of time. The typical error made on
these measurements is 2 �m. On the top of Fig. 2, we show
six pictures taken during the take off of a water droplet. On
the bottom of Fig. 2 we plot the height of the water droplet
deposited on a silicon substrate at T ¼ 375 �C and room
pressure. It first bounces and lands on the silicon substrate. It
then enters in the lubrication regimes in which both radius
and vapor thickness decrease with time. At a certain time,
the droplet takes off from the substrate (see the movieM1 in
the Supplemental Materials [13]).

We recorded several evaporation processes and we rep-
resent in Fig. 3 the dimensionless elevation of the droplet
h� as a function of its radius R. The measurements are in
qualitative agreement with the pictures of Fig. 2 (top):

almost all droplets take off from the substrate when their
radii become of order Rl. The theoretical prediction given
above is tested against experiments. The full line is a best
fit with a single parameter a multiplying the predicted
critical radius Rl. We can see that the theoretical prediction
fits rather well the experimental data with a value a ¼ 2:2
close to unity. One can see that there is an important
dispersion in sizes at which the droplets take off. It seems
that, for the system of water droplets under study, the
lift-off is analogous to a subcritical transition (in other
words, for the same radius and temperature difference,
there are two equilibrium elevations in a certain range of
values of R=Rl). The same behavior has been observed for
water droplets on substrates at different temperatures.
Decreasing the temperature tends to decrease the dispersion
of radii at take off. Nevertheless the discontinuous character
of the escape from the lubrication regime remains.
We also investigated the behavior of an ethanol

Leidenfrost droplet. The same experimental procedure is
used and the silicon substrate is kept at similar tempera-
tures as for the study of water Leidenfrost droplets. Unlike
water droplets, almost all ethanol droplets do not rebound
and land on the substrate (see the movie M2 in the
Supplemental Materials [13]). This is due to the lower
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FIG. 1 (color online). Experimental set-up. A cloud of sub-
millimetric droplets is rained toward a silicon wafer inserted in
a copper bloc kept at a controlled temperature T1. The droplet
of radius R is at temperature T0 and at a distance h from the
substrate.

FIG. 2. Top: Pictures of a Leidenfrost droplet and its reflected
image on the silicon wafer. Bottom: Height of the droplet as a
function of time. After being dropped, it first bounces and lands
on the substrate. The droplet then stands on the substrate in the
lubrication regime. It finally takes off from the substrate.
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latent heat of ethanol and therefore to its larger evaporation
rate. As a consequence the ethanol droplets enter directly
in the regime described above for which h � l and we do
not observe a transition from the lubrication regime. The
experimental results are presented in Fig. 4 in which we
plot, as for water droplets, the dimensionless elevation of
the droplet h� as a function of its radius R. The data are
presented for 10 different ethanol droplets on a substrate
kept at T ¼ 400 �C. As stressed just above the escape from
the lubrication regime is no longer present and the height
h of the droplets increases in a continuous manner. In the
inset of Fig. 4, we represent the same experimental data
but plotted in a log-log representation. The black line
corresponds to the scaling law predicted in Eq. (6). A rather

good agreement is found between the theoretical prediction
and the experiments.
In this Letter, we have put in evidence the unexpected

behavior of a Leidenfrost droplet in the latter stage of its
evaporation. Below a critical size Rl the droplets escape
from the lubrication regime and take off from the substrate.
In an intermediary regime (Rl � R � Ri), the thickness
of the vapor film increases as the radius of the droplet
decreases. This latter prediction, based upon a detailed
analysis of the various physical phenomena involved, is
qualitatively different, and even opposed to the one com-
monly used: as a result of the standard approach to the
Leidenfrost phenomenon the vapor thickness is predicted
to decrease as the radius of the droplet decreases. The
different scaling laws presented in this paper are in
semiquantitative agreement with the experimental data
obtained on water and ethanol Leidenfrost droplets. In
particular, as observed and predicted, the thickness of the
vapor film increases as the droplets become smaller.
Besides its fundamental interest, this study should find
implications in many domains such as, for example, in
diesel combustion engines or in heat transfer using cooling
spray [14]. We hope that this study will motivate numerical
approaches complementary to the present study.
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