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We simulate an experiment in which a colloidal probe is pulled through an active nematic fluid. We find

that the drag on the particle is non-Stokesian (not proportional to its radius). Strikingly, a large enough

particle in contractile fluid (such as an actomyosin gel) can show negative viscous drag in steady state: the

particle moves in the opposite direction to the externally applied force. We explain this, and the qualitative

trends seen in our simulations, in terms of the disruption of orientational order around the probe particle

and the resulting modifications to the active stress.
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Active particles take energy from their surroundings
and convert this into mechanical work. Active fluids are
suspensions of such particles in a Newtonian solvent,
and they represent an interesting class of nonequilibrium
soft matter [1,2]. To the lowest order, an active fluid may
be modeled as a collection of force dipoles, exerted by
the active particles, which quite often have orientational
order (e.g., as a nematic phase). These force dipoles are
either contractile, when the forces are exerted ‘‘inwards’’
towards the centre of mass of each particle, or extensile,
in the opposite case. Suspensions of bacteria such as
E.coli are extensile fluids, while a dispersion of
Chlamydomonas (algae) is contractile, as is the actomyo-
sin gel which constitutes the cytoskeleton of eukaryotic
cells [1].

The continuous dipolar forcing present in active fluids
profoundly affects their macroscopic properties. For in-
stance, active nematics flow spontaneously in steady
state in the absence of any external force, provided the
activity level (dipole density) is high enough [3,4].
Simulations [3,5] show this flow to be chaotic, resem-
bling the ‘‘bacterial turbulence’’ observed in concen-
trated films of B. subtilis [6]. Furthermore, the bulk
rheology of active fluids is strongly non-Newtonian
[2,7]. Theory predicts an increase (reduction) in the
effective viscosity for contractile (extensile) fluids [2].
These predictions were confirmed by simulations [8,9],
and also by experiments on Chlamydomonas [10] and E.
coli [11].

The local flow properties of active fluids also differ
from their passive counterparts. These can be addressed
by monitoring the dynamics of a probe particle in a
‘‘microrheology’’ experiment. Such studies [12] find
marked violations of the fluctuation-dissipation theorem
[13–15], which in near-equilibrium systems links the
decay of random fluctuations to the linear force response.
Local flow of active fluids is of strong biophysical rele-
vance; for instance, the cytoskeleton in moving cells is
mainly subjected to localized cues rather than global

forces, and its response to these may be crucial to cell
motility [16].
Here we address a very basic issue of the local flow

response in active fluids. We ask: what happens when a
passive particle of radius R is dragged through an active
nematic with a force F? This represents perhaps the sim-
plest microrheological experiment possible on an active
fluid. We find by simulations, that this simple experiment
should lead to some very interesting results. First, the drag
coefficient � ¼ F=v (with v a steady particle speed) ex-
hibits a strongly nonlinear dependence on radius, in viola-
tion of Stokes’ law. This is especially noticeable in the
contractile case. We explain these violations in terms of
the deformation of the orientational order in the active fluid
around the probe particle, and present a simple scaling
theory for the balance between active and viscous forces.
Second, and strikingly, our theory and simulations show
that in a contractile fluid the colloidal probe, if large
enough, should move steadily in the direction opposite to
the applied force. That is, we find a stable steady statewith a
negative drag coefficient. We also simulate a transient
(force reversal) experiment that probes further the remark-
able physics in this regime.
Numerical model.—In the continuum limit, the hydro-

dynamics of an active nematic fluid can be described by a
set of continuum equations [1,2] that govern the time evo-
lution of the velocity field, u�, and of a (traceless, symmet-
ric) tensor order parameter, Q��. The latter describes the

orientational order of the active particles (whether bacteria,
algae, or cytoskeletal filaments) which usually have a
rodlike shape and are, thus, capable of nematic alignment
[1]. Without activity, nematics are described by a
Landau-de Gennes free energy density F ¼ FðQ��Þ þ
Kð@�Q��Þ2=2, with
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where indices denote Cartesian coordinates, summation
over repeated indices is implied, � controls the magnitude
of nematic order, and K is an elastic constant.

The hydrodynamic equation for the evolution of
the order parameter is: DtQ�� ¼ �H��, with Dt, a

material derivative describing advection by the fluid ve-
locity, u�, and rotation or stretch by flow gradients
(see [3]). The molecular field is H�� ¼ ��F =�Q�� þ
ð���=3ÞTrð�F =�Q��Þ and � is an inverse rotational

friction. The fluid velocity obeys @�u� ¼ 0, and also the
Navier-Stokes equation, in which a passiveQ��-dependent

thermodynamic stress enters [3]. The active force dipoles
then create a further stress,

��� ¼ ��ðQ�� þ 1
3���Þ; (2)

where � is the activity parameter that sets the dipolar force
density [2]. Note that � < 0 for contractile fluids and � > 0
for extensile ones. Within our hybrid numerical scheme,
we solve the Navier-Stokes equation via lattice Boltzmann,
and the equation for the order parameter via finite differ-
ence [17]. Periodic boundary conditions are deployed
throughout.

We introduce a spherical colloidal probe by a standard
method of bounce-back on links [18] which provides a no-
slip boundary condition for the velocity field at the solid
surface. Order parameter variations create additional elas-
tic and active forces on the particle which are computed by
integrating the total stress tensor over its surface. There we
impose planar anchoring of the nematic director, which as
usual, is a headless unit vector, n�, oriented along the
major principal axis of Q��. Planar anchoring is imposed

via an additional quadratic term in the free energy (see
[19,20] for details).

Below we give our results in simulation units [21]. To
convert them into physical ones, relevant for instance, to a
contractile actomyosin solution, we can assume a value of
K of 1.25 nN, and a rotational viscosity of 1:0 kPa=s.
(These values hold for typical cytoskeletal gels [22]). In
this way, the simulation units for force, length, and time
can be mapped onto 25 nN, 0:5 �m, and 10 ms, respec-
tively. Note that the same equations also apply to an
extensile bacterial fluid, but the mapping to physical units
in that case leads to very different values [3]. Our model
also neglects motility which is important in bacterial fluids,
where it naturally leads to density inhomogeneities [3,23].

Results.—We now discuss the result of our microrheo-
logical simulation in which a colloid of radius, R, is pulled
through an active fluid, either contractile or extensile. The
external force, F, was directed either along or perpendicu-
lar to the far field nematic director. For the values of R
chosen, plots of the steady state velocity, v, (measured
along F) versus F [see Figs. 1(a) and 1(b)] show a well-
defined linear regime at a small external force. In all of our
simulations, � is kept small enough such that no sponta-
neous flow arises in the absence of the probe particle [24].

Figures 1(a) and 1(b) show that the linear drag coefficient,
�0 ¼ F=vjF!0, increases with activity for a contractile
fluid, and decreases for an extensile one (within the pa-
rameter range that we explored). Thus, a contractile fluid
opposes motion more strongly than its passive counterpart,
an extensile fluid less. So far, this is in line with the
respective increase (contractile) and decrease (extensile)
of bulk fluid viscosities mentioned above [25].
By analogy with the formula for Stokes drag on a probe

of radius, R, in a passive fluid of viscosity, �, we can define
an effective viscosity for the probe motion as

�effðRÞ ¼ �0=ð6	RÞ: (3)

This is plotted as a function of R in Figs. 1(c) and 1(d)
after correction for periodic boundary effects [26]. If
Stokes’ law did hold, the effective viscosity should be
independent of R, and we see that this is indeed the case
for a passive nematic [� ¼ 0, open and filled circles in
Figs. 1(c) and 1(d)]. When activity is switched on, this
picture changes dramatically and the drag coefficient
becomes strongly non-Stokesian. For a contractile fluid,
this anomaly is most apparent when pulling along the
director field, where the effective viscosity increases
sharply with the radius. In the extensile case, the most
markedly anomalous response is instead obtained when
the particle is pulled perpendicularly to the far field

FIG. 1 (color online). (a), (b) Plots of vðFÞ curves for colloids
of fixed radius R ¼ 11:3, at various � (see legend) in a
contractile (a) and an extensile (b) active nematic, dragged,
respectively, parallel and perpendicular to the far field director.
(c), (d) Dependence of �eff , measured according to Eq. (3), for
both (c) contractile and (d) extensile cases. Filled symbols refer
to an external force parallel to the far field director, while empty
symbols are used for orthogonal drag. Different symbols (colors)
refer to different activities [see legends in (a) and (b)]. In the
insets of (a) and (b), we sketch the director field and active force
directions for a colloid pulled (a) in a contractile active fluid
along the far field director, and (b) in an extensile fluid perpen-
dicular to it.
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director, and the effective viscosity this time drops with
size.

These results show that for active fluids, microrheology
experiments do not simply probe the fluid, but measure a
scale-dependent property of the probe and surrounding
fluid in combination. Although microrheology is, thereby,
disconnected from bulk rheology, such experiments may
offer essential insights into the physical response of (for
instance) an actomyosin gel on the length scale relevant to
transport of organelles or other subcellular objects [16].

We can qualitatively explain the anomalous drag,
�0ðR; �Þ, in Fig. 1(c) via the following argument [sketched
in Fig. 1(a) inset]. As the colloidal probe is pulled through
the contractile fluid, it deforms the director field. With the
pulling force oriented parallel to the far field director,
planar anchoring requires an elastic splay of the director
locally. Because of the fluid flow created by particle dis-
placement, this splay will be stronger in front of the mov-
ing particle than behind it. Through its effect on the active
stress, the splay will result in a large force opposing the
motion at the front, and in a smaller force favoring it at the
rear. The net effect is to slow the particle down: �0 is
increased. The same argument holds for pulling perpen-
dicular to the director, but here, is much smaller. We
attribute the different magnitude of the effect in the two
directions to the fact that contractile activity enhances the
splay response (leading at large wavelengths to an insta-
bility involving splay but not bend [1]). One can, likewise,
understand the results in Fig. 1(d) for an extensile fluid, by
sketching the expected nematic deformation in front and at
the rear of the particle [see inset in Fig. 1(b)]. Now the
incipient instability is towards bending, so pulling perpen-
dicularly to the director gives the larger effect. Moreover,
the active stress on the front of the particle now favors
motion and the smaller one at the back opposes it: so drag
is reduced. These arguments suggest that the vðFÞ curves
should strongly depend on the anchoring conditions at the
particle surface, and we have confirmed this numerically
(data not shown).

Building more quantitatively on these arguments, we
now estimate the extra force acting on a moving particle
arising from the active contribution to the stress (integrated
over the colloidal surface). This depends on the surround-
ing flow field and nematic deformation, details of which
can only be computed numerically. Nonetheless, we can
argue that activity leads to an additional force on the
particle which, on dimensional grounds, equals AðFÞ�R2.
To estimate A, we note that for F ¼ 0, the particle is
immobile, so that the extra force should also vanish:
Að0Þ ¼ 0. To first order, dimensional analysis now sug-
gests A� cF=K with c, a positive dimensionless number
of order unity [27]. (Our previous arguments show that
A=F is positive for both signs of � .) The force balance for
the moving colloid in steady state is then given by Fþ
c�FR2=K ¼ 6	~�Rv, where ~� is the passive nematic

viscosity, which may depend on pulling direction. This
equation together with Eq. (3) leads to the following
prediction for the effective viscosity

1

�eff

¼ 1

~�

�
1þ c�R2

K

�
: (4)

This provides a surprisingly robust explanation for the
size dependence of the drag coefficient: Fig. 2(a) shows
that for a colloid in a contractile fluid, plotting 1=�eff

versus R2 yields a straight line as predicted by Eq. (4).
By fitting our numerical data, we also obtain c� 0:06 for
parallel pulling that is independent of � , which further
validates our approximate theory. However, Eq. (4) works
less well in the extensile case. There, the effect is smaller,
and passive contributions to the stress tensor possibly play
a more significant role.
Our simplified theory in Eq. (4) formally predicts that

when the dimensionless quantity, c�R2=K <�1, �eff < 0,
giving a negative drag coefficient (�¼F=v<0). However,
one might reasonably expect that before this regime is
reached, our leading order expression A� cF=K would
break down and some different physics would come into
play, so that � remains positive. Remarkably though, this is
not the case. Although positive �ðFÞ appears to be restored
at extremely small forces, for modest but finite F, we
robustly find that the particle moves in the opposite direc-
tion to the externally applied force. A steady state vðFÞ
curve showing this effect for c�R2=K � 2:2 is shown in
Fig. 2(b). This reverse sigmoidal curve shows bistability at
small forces, with two stable branches each of negative

FIG. 2 (color online). (a) Plot of 1=�eff on R2, yielding an
approximately linear dependence in agreement with Eq. (4).
(b) vðFÞ curve for a case with negative drag (R ¼ 30, � ¼
�0:002). Filled circles and open squares refer to simulations
in which the force is applied to a quiescent and moving colloid,
respectively. The velocity fields in (c) and (d) correspond to the
case of a quiescent particle (c) and of a particle moving to the
left, opposite to the applied force (large arrow) (d).
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drag, � ¼ F=v < 0, and also negative slope, dF=dV < 0.
Interestingly, there seems to be no simple relation between
negative local drag in contractile fluids and the homoge-
neous bulk rheology of active fluids. In the latter, a nega-
tive ratio of stress to strain rate can arise, but only in the
extensile case [3]. Moreover, the resulting flows are ge-
nerically unstable [5].

To shed more light on the nature of the negative drag
state in contractile fluids, we plot in Figs. 2(c) and 2(d), the
active fluid flow around a stationary, unforced probe par-
ticle and that, for one moving against the external force.
For the static particle, a symmetric pattern of eddies is
created by contractile forces arising from the deformation
of the director (horizontal in far field), which splays around
the sides of the probe and bends at its top and bottom. In
the negative drag regime with the external force acting
to the right, the eddies become asymmetric, creating a
packet of left-moving fluid. The resulting leftward advec-
tive velocity of the particle exceeds its rightward speed
relative to the local fluid packet, giving an overall leftward
motion in the lab frame.

We have examined how this remarkable steady-state
flow pattern is reached dynamically. On introducing a
rightward force, the particle first moves rightward (see
Fig. 3) creating strong elastic distortions on its leading
(right-hand) side. Such deformations then establish the
leftward moving fluid packet [as in Fig. 2(d)], which sets

up deformation in the surrounding director field to finally
create the steady-state travelling flow packet with the
particle, as well as the fluid, moving leftward. We empha-
size that this spontaneously moving state is quite distinct
from the bulk spontaneous flows known to occur in active
fluids when activity exceeds a system size dependent
threshold [4]. Because we are below that threshold, in
our simulations the fluid velocity is essentially localized
in the neighborhood of the probe particle.
A further exploration of the bistable negative drag

region at small F is presented in Fig. 3. Here, we start
with a static particle, of radius large enough to give
negative drag (c�R2=K � 2:2) and first pull it to the right.
The transient response was already described above, and
leads finally to steady leftward motion. We now reduce F
to zero: the particle keeps moving to the left, but slows
down. We next, start pulling the particle with a tiny
leftward force: the probe continues to move leftward,
albeit even more slowly than before. If this last stage is
repeated with a much larger leftward force, the active
flow and deformation pattern around the colloid dynami-
cally reconstructs itself with the opposite sense, leading to
a rightward probe velocity, and once more to a negative
drag. This sequence of states can be viewed as a trajectory
on the vðFÞ curve of Fig. 2(b). The initial large rightward
force puts the particle on the lower branch of the curve to
the right of the vertical axis. As the force is removed and
then applied to the left, the system ascends this lower
branch. Where that branch ends, the system must jump to
the upper branch.
Conclusion.—We have simulated numerically a simple

microrheological experiment, which should be realizable
in the laboratory (with some caveats, noted below). In this
experiment, a colloidal probe is pulled through an active
nematic fluid. We have shown that the activity leads to a
non-Stokesian drag force that increases approximately
quadratically with particle size. This behavior creates a
new regime, arising in a contractile fluid such as an acto-
myosin gel, at large values of a dimensionless parameter,
c�R2=K. Strikingly, in this regime, the colloidal probe is
predicted to move against the driving force to create a
stable steady-state of negative drag. This contrasts with
the bulk behavior of active fluids where negative ratios of
stress to strain rate can arise in principle, but are unstable,
and expected only for the opposite sign of activity (exten-
sile rather than contractile) [3].
Stable negative drag is counterintuitive but no physical

law prevents it in active systems. Related phenomena
have been reported for an ensemble of molecular motors
with load accelerated dissociation [28], in axon mechan-
ics [29], for filament fluctuations in active media [7], and
also in the upstream migration against a flow field of
slime mold cells [30], and bacteria [31]. In our context,
the anomalous (ultimately negative) drag stems from the
active stress, Eq. (2), that emerges from a well-accepted

FIG. 3 (color online). Dependence of the external force (step
functions, axis on the right) and of the particle velocity (axis on
the left) on time for two different ‘‘experiments.’’ In both cases, a
force F ¼ 0:8 is initially applied to the particle and turned off.
Then a smaller force is applied along the direction of particle
motion: the blue dotted line and the red dot-dashed one give the
values of the external force in the two cases. The correspondent
particle velocities are given by the black solid and green dashed
lines, respectively. The dynamics are discussed in the text. In the
sketches, arrows on the fluid refer to the active force direction,
the arrow on the colloid represents the external force, while that
above the particle shows the actual direction of motion.
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coarse grained description of activity in systems such as
cytoskeletal gels [1]. Finally, an important requirement
for any experimental test of our predictions with acto-
myosin is that issues arising from macroscopic network
clustering should be avoided [32]. This might be feasible
either through a suitable choice of parameters, such as
myosin concentration etc., or by working in metastable
uniform networks. However, such experiments may well
prove to be challenging.
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M. E. C. is funded by the Royal Society.
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