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Thermal fluctuations of lipid orientation are analyzed to infer the bending rigidity of lipid bilayers

directly from molecular simulations. Compared to the traditional analysis of thermal membrane undu-

lations, the proposed method is reliable down to shorter wavelengths and allows for determination of the

bending rigidity using smaller simulation boxes. The requisite theoretical arguments behind this analysis

are presented and verified by simulations spanning a diverse range of lipid models from the literature.
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The mechanics of biomembrane shape are commonly
formulated in the Helfrich-Canham picture [1–4], which
models membranes as thin, structureless, and homogene-
ous fluid sheets. In the tensionless state, the free energy of
such a membrane reads

F ¼
Z �

Kc

2
ðJ � C0Þ2 þ KGK

�
dS; (1)

where J is the local total curvature, K is the local Gaussian
curvature, and the integral spans the membrane surface S.
The physical constants Kc (bending rigidity), C0 (sponta-
neous curvature), and KG (Gaussian bending rigidity) de-
termine membrane behavior within this picture. For a given
surface topology, the second term is a simple constant [5]
and C0 ¼ 0 for a symmetric bilayer with identical leaflets.
This leaves Kc to fully specify membrane behavior and to
distinguish between chemically distinct membranes for
many common experiments (within the Helfrich-Canham
model). The membrane’s resistance to bending plays an
important role in a number of biological situations, includ-
ing endocytosis [6], the organization of membrane traffick-
ing [7], and membrane fusion [8]. Kc is arguably the single
most important quantity in membrane biophysics, and
considerable effort has been expended on measuring, pre-
dicting, and understanding how it varies across different
lipid bilayers [4,9–18].

Analyzing thermal shape fluctuations of tensionless
quasiplanar membranes in a periodic simulation box
[18–20] has become the standard method for determining
Kc from molecular simulations. In this geometry, the
Helfrich-Canham surface is conveniently specified by the
‘‘height field’’ hðx; yÞ ¼ hðrÞ, which indicates the vertical
displacement of the membrane from the minimum
energy configuration hðrÞ ¼ 0. Equation (1) may then be

written, assuming small deviations from hðrÞ ¼ 0, as F¼
Kc

2

R
L2ðr2hÞ2dr or F ¼ Kc

2

P
qq

4jhqj2 for hðrÞ¼ 1
L

P
qhqe

iq�r

expressed as a Fourier series. The equipartition theorem then

predicts hjhqj2i ¼ kBT=Kcq
4; the value of Kc is inferred by

fitting the simulation results for hjhqj2i to this expression.

Schemes to extract Kc from simulation data by analyz-
ing membrane response to applied forces have also been
proposed [21–23]. These methods are interesting from
theoretical and conceptual perspectives and have helped
to demonstrate the validity of Eq. (1) over a range of
geometries, but are not widely used as practical tools to
extract Kc from simulations. The overwhelming popularity
of the shape fluctuation approach follows from the straight-
forward nature of both the required simulations and sub-
sequent analysis, as well as the generality of the approach
to a diverse range of membrane models spanning coarse-
grained to fully atomic representations. The other schemes
are more complicated to implement and/or may be well
suited only for simplified lipid representations.
Despite widespread use of the shape fluctuation meth-

odology, the approach is open to criticism. The underlying
theory [Eq. (1)] presumes that the membrane is a thin sheet
devoid of any internal structure. While this assumption
holds for fluid bilayers over sufficiently long wavelengths,
it necessarily breaks down at length scales comparable to
the bilayer thickness. Due to computational constraints,
simulations often involve a membrane patch that is only
on the order of ten times larger in lateral dimension than
the membrane is thick. It is not obvious that Eq. (1) should
hold at these length scales; indeed, the prediction hjhqj2i ¼
kBT=Kcq

4 is seldom a perfect fit to the simulation data,
even at the longest wavelengths allowed by the box (e.g.,
see Fig. 5). This imperfect correspondence between theory
and experiment at observable wavelengths is, at least par-
tially, to blame for the disparity of reported values ofKc for
identical simulation models [20,24–28]. Recent theories
[26,29,30], which include the influence of lipid tilt on
bilayer shape [31,32], have provided improved predictions
for hjhqj2i over simulated length scales, but we argue that

the focus on hjhqj2i is primarily motivated by history and

may be somewhat misguided. A more lucid physical
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picture, simpler theoretical expressions and streamlined
data analysis are suggested by concentrating interest on
fluctuations in lipid orientation.

In this Letter, we demonstrate that Kc can be measured
by directly analyzing thermal fluctuations in lipid orienta-
tion. This approach is similar to methods that have been
applied to determine Frank elastic constants in the liquid
crystal literature (see [33] and references therein). The
method relies on identical simulations and similar analyses
as employed in the shape fluctuation approach, but has the
advantage that theory and simulation show good agreement
down to shorter wavelengths. This makes it possible to
determine Kc for detailed lipid models more accurately
than was previously possible. Existing simulation data may
be re-analyzed to obtain better estimates of Kc without the
need to perform new simulations. Insofar as Kc provides a
key physical observable to compare theory, experiment,
and simulation in membrane biophysics, this represents an
important practical step forward in our understanding of
these systems. In addition to Kc, the technique provides a
straightforward method for measuring the lipid tilt modu-
lus K� and twist modulus Ktw, which govern mesoscopic
aspects of bilayer structure.

Our theoretical approach is based on a reformulation of
the model described in Ref. [26], by changing basis within
the theory to replace the bilayer height field with the
longitudinal component of the vector field associated
with lipid orientation. Those aspects of the original theory
needed to motivate this reformulation are summarized
here. We refer readers to Ref. [26] for a detailed explana-
tion and derivation of the model itself. Here, we focus only
on the smooth ‘‘macroscopic’’ contributions to bilayer
energetics and ignore microscopic ‘‘protrusions.’’ Our in-
tent is to provide a practical scheme to extract Kc from
simulation data, and we demonstrate that the macroscopic
model alone is sufficient to accomplish this. Readers in-
terested in the protrusion regime are referred to Ref. [26].

The geometric setup of the model is illustrated in Fig. 1,
adopting the notation ofRef. [26]. The superscript� ¼ f1; 2g
refers to the top and bottom leaflets, respectively. The font n
denotes a 3D vector, whilen denotes its xy components. The
vector r refers to xy position. We denote the exact bilayer
height field as hðrÞ, while zþðrÞ denotes the smooth macro-
scopic continuum field used to approximate h in the absence
of protrusions. From the definitions described in Fig. 1, it

is convenient to use the quantities n̂�1
2½nð1Þ�nð2Þ� and

m̂ � 1
2 ½mð1Þ �mð2Þ� to describe the collective molecular

orientation and tilt of the bilayer, respectively.
The bilayer free energy decouples into independent

peristaltic modes, which correspond to perturbations in
bilayer thickness, and undulation modes, which are asso-
ciated with overall membrane shape. In this Letter, we are
only concerned with undulations. For vanishing surface
tension and fixed topology, the free energy associated
with undulations is [see Eqs. (18) and (20) of Ref. [26]]

Fu ¼ 1

2

Z �
Kb

c ðr2zþ þ r � m̂Þ2 �
~�

b0
"ðr2zþ þ r � m̂Þ

þ KA

b20
"2 þ K�m̂

2 þ Ktwðr � m̂Þ2
�
dr; (2)

where " � zðmÞ � zþ and b0 is the mean monolayer thick-
ness. The elastic moduli in Eq. (2):Kb

c (bending modulus for
constant monolayer thickness deformations),KA (compressi-
bility modulus), K� (tilt modulus), Ktw (twist modulus), and
~� (bending-compression coupling) represent bilayer quan-
tities and are twice the corresponding monolayer quantities
introduced in Ref. [26] (e.g., KA ¼ 2kA, etc.).
Due to coupling between zþ, ", and m̂, Kb

c is not the
quantity associated with bilayer bending in the usual sense.

Kc ¼ Kb
c � ~�2=8KA has all the properties usually associ-

ated with the bilayer bending modulus [26]. In particular,
hjzþq j2i ¼ kBT=Kcq

4 asymptotically as q ! 0 for this model

[26]. In this regime, the details of internal structure within the
bilayer are unimportant, and membrane shape behaves as
predicted by the Helfrich-Canham picture. However, the
general prediction following from Eq. (2) is [26]

hjzþq j2i ¼ kBT

�
1

Kcq
4
þ 1

K�q
2

�
: (3)

The second term reflects energetic coupling between shape
and tilt (see Fig. 2), and is an important contribution to
hjzþq j2i on length scales comparable to and somewhat larger

than the bilayer thickness [29,30] (see Fig. 5). (An additive
q�2 contribution to the traditional height spectrum was
originally proposed in Ref. [18], and was attributed to micro-
scopic protrusions. Simultaneous analysis of membrane
shape and lipid tilting in molecular simulations indicates

z(1)

z(2) z(m)

z+

FIG. 1 (color online). For each leaflet, zð�Þ represents the
smooth (protrusionless) surface running though the hydrocarbon
water surfaces. zðmÞ is the smooth surface which separates the top
and bottom leaflets, so that the top monolayer is bounded by zð1Þ
and zðmÞ, while the bottom monolayer is bounded by zðmÞ and zð2Þ.
The coarse-grained shape of the membrane averaged over the top
and bottom monolayers is given by zþ � 1

2 ½zð1Þ þ zð2Þ�. The unit
vectors Nð�Þ are normal to zð�Þ and point toward the interior of
the bilayer. Assuming the membrane is nearly flat, the normals
may be approximated as Nð�Þ ¼ ð�1Þ�½�rzð�Þ; 1�. Molecular
orientation of the lipids is described by the unit vector field nð�Þ,
which points from zð�Þ to zðmÞ along a vector connecting the two
ends of the lipid hydrocarbon chain(s). The xy components of the
dashed vectors denote the tilt vector mð�Þ ¼ nð�Þ �Nð�Þ.
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that q�2 scaling at short wavelengths is primarily attributable
to lipid tilt [26,29].)

Equation (2) simplifies by recognizing that n̂ ¼ rzþ þ
m̂, so that the free energy may be rewritten as

Fu ¼ 1

2

Z �
Kb

c ðr � n̂Þ2 �
~�

b0
"r � n̂

þ KA

b20
"2 þ K�m̂

2 þ Ktwðr � m̂Þ2
�
dr: (4)

This change amounts to a simple linear transformation to
express the energy in a form that is almost diagonal and
displays similarity to the Frank theory of nematic liquid
crystals [31,32,34] at the expense of losing explicit refer-
ence to the shape field zþ familiar from Helfrich-Canham
theory. The two representations [Eqs. (2) and (4)] are com-
pletely equivalent within the quadratic order expansion in
small quantities implicit in the theoretical treatment.

Thermal fluctuation spectra are calculated from
Eq. (4) as follows. For a box with periodic boundary
conditions and area L2, we adopt the Fourier representation
discussed earlier. The values of the wave number q are
given by q ¼ 2�ðn;mÞ=L for the integers n;m ¼
f�M

2 ; . . . ; 0; . . . ;
M
2 � 1g, where M is dictated by a short

wavelength cutoff. n̂q may be written in terms of longitu-

dinal and transverse components n̂kq ¼ 1
q ½q � n̂q� and

n̂?q ¼ 1
q ½q� n̂q� � ẑ, and similarly for m̂. In Fourier space,

the energy reads Fu ¼ 1
2

P
q
~fuð�qÞ �C � ~fTu ðqÞ, where

~fuðqÞ ¼ ½n̂kq; "q; m̂k
q; m̂

?
q � and

C ¼

Kb
cq

2 iq ~�=b0 0 0

�iq ~�=b0 KA=b
2
0 0 0

0 0 K� 0

0 0 0 K� þ Ktwq
2

0
BBBBB@

1
CCCCCA:

From the equipartition theorem [3], thermal fluctuations in
lipid orientation follow immediately:

hjn̂kqj2i ¼ kBT

Kcq
2
; hjn̂?q j2i ¼ kBT

K� þ Ktwq
2
: (5)

The first of these equations represents the primary result of
this Letter, establishing a foundation for determination of
Kc directly from fluctuations in the longitudinal compo-
nent of lipid orientation. The second equation follows
from the fact that n̂?q ¼ m̂?

q since n̂ ¼ rzþ þ m̂. From

Eq. (5), the tilt and twist moduli fK�;Ktwgmay be extracted
from the transverse orientation fluctuations.
The theoretical predictions were compared against three

very different molecular simulations: an aggressively
coarse-grained implicit solvent system (CG) [25], the
MARTINI model for DPPC [27,35], and a united atom
(UA) force field for DMPC [36]. Trajectories from previ-
ously reported simulations [24,26] were used in the analy-

sis. We are unaware of the quantities hjn̂kqj2i and hjn̂?q j2i
previously being measured in simulations, but closely
related tilt fluctuations have been reported [26,29,30].
Appendix C of Ref. [26] details the analysis of molecular
simulation trajectories to obtain tilt, height, and related
fluctuation spectra. This procedure was adapted to measure
orientation spectra simply by considering the molecular
orientation vectors directly, without subtracting off the

local shape gradients (rzð�Þ) needed in the definition
of tilt. The only ambiguity in the process lies in defining
the orientation for individual lipids. (Where do you place
the vector head and tail relative to the atoms or sites in the
molecule?) The data presented in Figs. 3–5 assume the
following definitions: for the UA model, the molecular

orientation of each lipid [i.e., nð�Þ for that lipid] points
from the phosphate atom to the midpoint between the last
carbons of the two hydrocarbon chains; for the implicit
solvent system and MARTINI model, the vector points
from the interfacial beads to the last tail beads of the chains
(see Fig. 7 of Ref. [26]).

In order to extractKc, the raw data for hjn̂kqj2i is multipled

by q2 (Fig. 3). As predicted by Eq. (5), these scaled data are
constant until microscopic fluctuations (e.g., protrusions)
become prominent at short wavelengths. The values of Kc

were obtained by taking the average of the data points over
wavelengths greater than twice the bilayer thickness, yield-
ing Kc ¼ f36; 15; 15g � 10�20 J for the CG, MARTINI,
and UA models, respectively. The first two values agree
with previous measurements [26,28]. Kc obtained for the
UA DMPC model is twice as large as a recently reported
value [24] based on exactly the same simulation run as this
paper. The disparity is due to a subtle difference [37]
associated with the ‘‘direct Fourier’’ analysis method pro-
posed and employed to analyze the simulation in Ref. [24].
(The experimentally measured value of Kc for DMPC
ranges from 15� 10�20 J [38,39] to roughly half that num-
ber [10,40].) The analysis was repeated using different

FIG. 2. Two modes of membrane bending (each box represents
a lipid and " ¼ 0 for simplicity). Top: Membrane bending
associated with splay in lipid orientation (r � n̂), in the absence
of any lipid tilting (m̂). Bottom: Membrane bending associated
with lipid tilt, in the absence of splay. The top mode represents
the dominant contribution to bending at long wavelengths and
the source of q�4 scaling in hjhqj2i. The bottom mode involves

an increase in the average area per lipid exposed to solvent and is
associated with a q�2 scaling characteristic shape fluctuations
damped by surface tension.
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definitions for the molecular orientation vector, as sug-
gested in Refs. [29,30] (data not shown). The extracted
values ofKc changed by 5%or less. This degree of influence
on Kc is similar to that found by changing the molecular

definition of zð�Þ in the traditional shape analysis.
The tilt and twist moduli fK�;Ktwg were obtained

by fitting the transverse fluctuations to Eq. (5) over all
values of q. The results are shown in Fig. 4. The fitted
values are K� ¼ f5:2; 11; 5:6g � 10�20 J

nm2 and Ktw¼
f2:2;1:5;2:4g�10�20 J for the CG,MARTINI, andUAmod-
els, respectively.UnlikeKc, thevalues of fK�;Ktwg aremore
sensitive to the molecular definition of orientation [29,30].

We findK� ¼ 9� 10�20 J
nm2 for theMARTINImodel when

choosing the midpoints of all head beads and tail beads to

represent the start points and endpoints of nð�Þ, respectively.
For UA,K� ¼ 3:6� 10�20 J

nm2 when drawing nð�Þ from the

carbon joining the two chains to themidpoint of the carbons
at the end of each chain (data not shown).
For purposes of comparison, we plot hjhqj2iq4 for the

same three simulations in Fig. 5. If the traditional Helfrich-
Canham prediction held, we could extract the bending
modulus as Kc ¼ kBT=½hjhqj2iq4� in the regime where

the denominator is constant. This regime is, at best, con-
fined to the longest two wavelength modes for both the CG
and MARTINI data; it is not present at all for the UA
model. It is difficult to see how one could be confident
with a Kc value extracted in this manner, for any of these
simulations. An improved analysis to obtain Kc from the
height field is possible, but requires use of Eq. (3) and
knowledge of K� (see Fig. 5). Using the values of K�

determined from the transverse orientation fluctuations in
Fig. 4, we find Kc ¼ f37; 14; 11g � 10�20 J for the CG,
MARTINI, and UA models. However, repeating the
analysis with the alternate orientation definitions discussed
above leads to Kc ¼ f13; 16g � 10�20 J for the MARTINI
and UA models. Unfortunately, the sensitivity of K� to
the molecular definition of orientation propagates to
uncertainty in Kc when using this approach. No such
uncertainty exists for the analysis based on the longitudinal
orientation fluctuations. The need to introduce K� to
solve for Kc is a considerable disadvantage. Figure 5 is
intended to demonstrate the consistency of the underlying
theoretical treatment and to highlight shortcomings of the
traditional approach, not to suggest determination ofKc via
height fluctuations.

1

0

0.2

2

CG

MARTINI DPPC

UA DMPC

1020

FIG. 3 (color online). The spectrum of longitudinal molecular

orientation fluctuations hjn̂kqj2i multipled by q2. Simulation data

are shown for an implicit solvent model (CG) (e), the MARTINI
model for DPPC (h), and a united-atom force field for DMPC
(�). Open symbols denote wavelengths greater than twice the
bilayer thickness, used in determination of Kc. For clarity, the
data sets for MARTINI and CG were vertically shifted by 0.1 and
0.2, respectively.

1

0

0.2

2

CG

MARTINI DPPC

UA DMPC

1020

FIG. 5 (color online). The spectrum of height fluctuations
hjhqj2i multiplied by q4 for the same simulations as in Fig. 3.

The gray symbols represent ‘‘correcting’’ these results, as sug-
gested by Eq. (3), to account for lipid tilt: ½hjhqj2i � kBT

K�q
2�q4. For

clarity, the MARTINI and CG data sets were vertically shifted by
0.1 and 0.2, respectively.

0 1 2
0

0.05 CG

UA DMPC

MARTINI DPPC

1020 5

FIG. 4 (color online). The transverse orientation spectrum

hjn̂?q j2i (see Fig. 3 for details). In contrast to hjn̂kqj2i, the theory

(solid lines) and simulation data agree down to wavelengths of a
few nanometers [Eq. (5)]. While different definitions of the
molecular orientation lead to quantitative changes in the
hjn̂?q j2i data for MARTINI and UA, the resulting spectra (not

shown) retain excellent agreement with Eq. (5).
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The primary message of this Letter may be seen in the
contrast between Figs. 3 and 5. If the Helfrich-Canham
theory were sufficient to describe membrane mechanics
over the scales probed in molecular simulations, both
figures would exhibit a significant plateau regime at low
wave numbers. In practice, such behavior is observed only
in Fig. 3, indicating the influence of lipid tilting on the
height spectrum. Lipid splay (r � n̂) is the only micro-
scopic deformation responsible for macroscopic bending,
as tilting is relatively unfavorable over long wavelengths
(Fig. 2). Splay is associated with the longitudinal compo-
nent of the lipid orientation field and Eq. (5) provides a
simple means to extract Kc from molecular simulations
based on this fact. As a practical matter, the proposed
method for measuring Kc can be applied to simulations
smaller than the ones used here and smaller than is needed
to determine Kc based on the popular shape fluctuation
approach. For the united atom simulation, a minimum
wave number of about 0:6 nm�1 could have been used to
safely measure the bending modulus (Figs. 3 and 5). Based
on the area per molecule of 0:6 nm2, a system consisting of
�400 lipids would be sufficient. This suggests that it may
be possible to accurately and routinely determine Kc for
various lipid systems, even fully-atomic models. Due to its
straightforward measurement, the orientation spectra
should join the list of standard quantities used to character-
ize lipid simulations.
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