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We present Casimir force measurements in a sphere-plate configuration that consists of a high quality

nanomembrane resonator and a millimeter sized gold coated sphere. The nanomembrane is fabricated

from stoichiometric silicon nitride metallized with gold. A Kelvin probe method is used in situ to image

the surface potentials to minimize the distance-dependent residual force. Resonance-enhanced frequency-

domain measurements of the nanomembrane motion allow for very high resolution measurements of the

Casimir force gradient (down to a force gradient sensitivity of 3 �N=m). Using this technique, the

Casimir force in the range of 100 nm to 2 �m is accurately measured. Experimental data thus obtained

indicate that the device system in the measured range is best described with the Drude model.
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In quantum theory the electromagnetic fields in vacuum
fluctuate as a consequence of the Heisenberg uncertainty
principle. It is well known that when two perfectly con-
ducting plates of area A are brought together by a distance
z, an attractive force arises [1]. The interaction energy (per

unit area) at zero temperature is given by EðzÞ ¼ @c�2

720z3
. In

the case of real metals the finite conductivity and thermal
effects have to be taken into account. The corrected energy
can be calculated using the Casimir-Lifshitz formalism [2],
within which the model used to describe the complex
permittivity �ð!Þ can substantially modify the calculation
of the energy, where ! is the angular frequency of the
electromagnetic wave. There have been debates [2–4]
about the model for the permittivity at low frequencies:
the key question was whether the TE (transverse-electrical)
mode for ! ¼ 0 contributes to the Casimir force. In the
plasma model of free electrons, beyond the plasma fre-
quency the metal becomes transparent, and the TE mode
(! ¼ 0) contributes to the total force. In the Drude model,
on the other hand, there is no contribution of the TE mode
(! ¼ 0) to the total Casimir force. It has been recently
reported [5] that the Drude model describes the Casimir
force in the range of 0:7 to 7 �m with a higher accuracy,
therefore excluding the plasma model in that range [5],
whereas earlier results suggest that the plasma model
should apply at smaller plate separations [6]. Thus the
permittivity model at short distance remains an open
question.

Broadly speaking, the Casimir force measurements can
be categorized into two size regimes: macroscale and
microscale. The macroscale measurement setup is usually
used in the study of the Casimir force between centimeter
objects [7,8] whereas the microscale measurements utilize
MEMS devices or micro-cantilevers as sensitive force
transducers [9–11]. The macroscale measurement setup
has an excellent performance at distances larger than
0:6 �m but at shorter distances, it suffers from surface

contamination due to the relatively large device areas, in
particular, micron-scale particles. The low frequency, very
compliant torsional balance involved in these measure-
ments further limits the distance of approach, owing to
environmental variations (such as seismic effects, building
vibrations, etc.). In measurements involving microscale
devices, particulate contamination is less of a concern.
However the measurable separation of the Casimir force
is also smaller due to fast scaling down of the Casimir force
with reduction of interaction area. In spite of this, one can
obtain a higher force sensitivity due to the miniaturized
force sensor.
In this Letter, we report measurements on a new Casimir

Force sensor that bridges the measurement at microscale
and macroscale by utilizing a nanomembrane of millimeter
lateral dimensions as a sensitive force transducer. A sepa-
rate millimeter sized gold coated sphere is used in a sphere-
plate configuration to approach the nanomembrane. Since
both surfaces have relatively large areas, a sizable Casimir
force can be measured even at larger separation distances.
The nanomembrane, fabricated from stoichiometric silicon
nitride, retains a reasonably high quality factor even after
gold metallization, therefore enables high force sensitivity.
More importantly, due to the large built-in tensile stress of
the stoichiometric nitride, the net stress of the bilayer
remains tensile, which guarantees nanometer flatness
(3 nm) over the whole device area (1 mm� 1 mm). The
difficulty in controlling the surface flatness and particulate
contamination in traditional measurement schemes is thus
mitigated.
Most notable is that this new Casimir force sensor also

allows for in-situ measurements of contact potentials uti-
lizing Scanning Kelvin probe principle. It is known that,
although in the case of an ideally clean conductor the
surface should be equipotential, that is not usually the
case in real metals [12]. The contact potential is not
homogeneous along the surface and thus generates a
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surface potential. Such potentials may have several origins
such as oxide films or adsorbed chemicals on the surface.
To achieve precision Casimir force measurements, it is
important to minimize the electrostatic contribution to
the measured force. Usually a constant DC voltage is
applied to the sphere to cancel the residual potential
[9–11]. By scanning the metal sphere over the membrane,
we are able to image the spatial distribution of the contact
potential in-situ. We show that the surface potential gen-
erates an electrostatic residual force that cannot be com-
pensated by applying a fixed DC voltage between the two
plates. Instead, a separation dependent potential has to be
applied in real time to cancel out the contribution from
electrostatic forces. With these improvements, we have
achieved unambiguous measurements of the Casimir force
in the 100 nm–2 �m range.

The silicon nitride nanomembranes of 1 mm� 1 mm
are fabricated using bulk micromachining through the
handle silicon wafer. These nanomembranes were subse-
quently coated with 200 nm of Au using an e-beam evapo-
rator. Silicon nitride nanoresonators have been
demonstrated to have very high quality factors at resonance
[13]. Prior to the metal coating, the mechanical quality
factor of the nitride membranes exceeds 1 000 000. After
metal coating, the quality factor deteriorates depending on
the metal patterns on the membrane. In our Casimir stud-
ies, we choose to metallize the whole chip and fully cover
the membrane so that the Casimir force is dominated by
the interaction between the gold surfaces. This also allows
us to apply electrical potentials to the interacting surface
across the gap for electrostatic characterizations. In
this case, the quality factor drops to approximately
10000–20000, which is still significantly higher than other
types of metal resonators [14]. An image of a gold coated
nanomembrane is shown in the inset in Fig. 1.

Our measurement setup consists of a fiber interferometer
that measures the nanomembrane displacement on one side

of the membrane and a sphere on the other side. The sphere
has a radius of R ¼ 4 mm� 2:5 �m [15] and is coated
with 200 nm of gold. Each of the components—the mem-
brane, the sphere, and the fiber - are individually mounted
on a set of XYZ stages, driven by picomotors for coarse-
alignment. An additional set of 3-axes scanning stages (PI
Nanocube, 100 �m range per axis) are mounted on a
sample stage to achieve sample lateral scanning and inter-
ferometer stabilization. The sphere is brought to approach
the nanomebrane with a closed-loop piezo actuator with
subnanometer resolution (0.3 nm). A schematic of the
setup is illustrated in Fig. 1. All the components are
made vacuum compatible prior to their installation in the
vacuum chamber. Before the sample is introduced in the
vacuum chamber, it is sealed in the clean room within a
desiccator filled with inert gas. In order to maintain highQ,
measurements were taken at pressures below 10�6 Torr,
sustained by an ion-pump which eliminates mechanical
vibrations. The vacuum chamber is further mounted on a
damped 1500 kg granite table. A wood triangle is inserted
between the vacuum chamber and the granite table to
achieve further damping. In all our measurements, the
room temperature is regulated at 20� 0:1 �C.
We conduct frequency-domain measurements of the

mechanical resonator, whereby the Casimir Force gradient
modifies the frequency of the nanoresonator. This tech-
nique yields better stability than static measurements. In
addition, the higherQ factor also yields higher sensitivities
in frequency measurement [11]. In order to track frequency
shifts, the nanomembrane is driven by a piezo-actuator,
and its motion is readout with the fiber interferometer. A
lock-in amplifier (Zurich Instruments HF2) with a Phase-
Lock-Loop (PLL) module is employed for these
measurements.
While approaching the sphere, the force experienced by

the membrane has contributions from the Casimir Force as
well as the electrostatic force. If we consider the first 3
terms of the Taylor expansion of the external force FðzÞ
about the distance z0, the equation of motion of the nano-
membrane becomes

€zþ 2� _zþ!2
mðz� z0Þ ¼ Fdðz0Þ

meff

ei!dt þ 1

meff

F0ðz0Þðz� z0Þ

þ 1

meff

F00ðz0Þ
2

ðz� z0Þ2

þ 1

meff

F000ðz0Þ
6

ðz� z0Þ3 (1)

where !m ¼ 2�fm is the fundamental angular frequency
of the membrane, !d the angular driving frequency, � is
the damping coefficient, Fdðz0Þ is the driving force, meff

the effective mass of the nanomembrane and F0, F00, and
F000 are the derivatives of the external force with respect to
the distance z. Although the resonator is set to operate in
the linear regime there is some contribution from high

FIG. 1 (color online). Schematic of the measurement appara-
tus. In the inset an optical image of the gold coated membrane is
shown.
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order derivatives of the external force in the resonance
frequency. The resonance frequency is modified by

�f ¼ � fm
2keff

�
F0ðz0Þ þ A2

rms

6
F000ðz0Þ

�
¼ � fm

2keff
F0
aðz0Þ

(2)

where F0
a is the apparent force [16], Arms the RMS ampli-

tude of motion of the nanomembrane and keff ¼ meff!
2
0 is

the spring constant. The biggest contribution comes from
the first derivative of the force [17] and the term with the
third derivative of the force can be considered as a correc-
tion which is equivalent to the corrections for the rough-
ness and the fluctuations of the plates that have been
considered before [5,18].

We first evaluate the frequency resolution by measuring
the frequency fluctuations of the resonators at a fixed
membrane-sphere distance (1 �m). The Allan deviation
is shown in Fig. 2, indicating that frequency resolution
down to 2� 10�9 can be achieved with integration time
of 0.4 s. To achieve this resolution high stability of the
resonance frequency is required, which is obtained by
isolating the system from environmental fluctuations. No
ambient light is allowed to enter into the chamber to avoid
thermal fluctuations. The temperature is stabilized within
0:1 �C and the granite table damps the external mechanical
vibrations. This frequency resolution allows us to measure
a force gradient of 3 �N=m.

Having established high frequency resolution, we
approach the sphere close to the membrane resonator
utilizing the closed-loop piezoactuator. From Eq. (1) it
can be found that the frequency shift can be fitted to a
parabola [19]

f2 ¼ f0ðzÞ2 � KpðzÞðV � VmðzÞÞ2 (3)

where V is the voltage applied between the membrane and

the sphere. At each distance, a set of 3 voltages V is applied
[14]. With these measurements we can find the fitting
parameters: f0ðzÞ, KpðzÞ and VmðzÞ. To improve the signal

to noise ratio, the measurements are repeated approaching
the sphere and retracting many times. Vm represents the
voltage that is required to minimize the electrostatic force
given by the second term of the equation. It is worth
emphasizing that the minimizing potential Vm is not nec-
essarily constant with the distance or the relative position
between the membrane and the sphere because of the
nonuniform work function or contact potential across the
plate. It has been suggested that such a variation of Vm can
cause an additional electrostatic force [12,20]. It can be
found that KpðzÞ ¼ �0�Rf

2
m=keffðz� zoffÞ2 where R is the

radius of the sphere, z� zoff the absolute distance, zoff the
offset distance, keff the effective stiffness of the membrane
and �0 the vacuum permittivity. The parameters keff and
zoff can be calculated by fitting the measured KpðzÞ to the

expected model [19]. After calibration, for each measure-
ment, the distance is calculated from the measured Kp and

the calibrated parameter keff . We have estimated that the
error in the position is about 1 nm at the closest distance.
The measured stiffness keff is 4000 N=m.
In Eq. (3), the first term f20 has contributions from the

Casimir force as well as from a residual electrostatic force
that cannot be canceled, given by

�f0 ¼ � fm
2keff

�
dFcðzÞ
dz

þ dFel
resðzÞ
dz

�
(4)

where Fc is the Casimir force and Fel
resðzÞ is the residual

electrostatic force. By considering that the surface poten-
tials are stochastic Kim et al. [12] deduced a model for the
residual electrostatic force as below:

Fel
resðzÞ ¼ �R�0½ðVmðzÞ þ V1Þ2 þ V2

rms�=z (5)

where V1 and Vrms are fitting parameters. Vrms accounts for
the force originated by the patches that are smaller than the
separation between the sphere and the plate.
The unambiguous measurement of the Casimir force

also requires a measurement of the surface contact poten-
tial distribution to ensure that the residual electrostatic
force does not shield the Casimir force. Kelvin probe
microscopes and its variations [21–23] have become reli-
able tools to inspect the contact potential difference (CPD)
distribution of a surface. With our microscope we can also
image the CPD between the sample and the sphere by
scanning the sphere with respect to the membrane and
simultaneously recording Vm. The CPD distribution is
directly related to the spatial distribution of the patches
on the sample. The patches on the sphere cannot be directly
observed.
We show the results for two membranes on the same

wafer, measured by the same sphere without breaking the
vacuum. The first sample labeled ‘‘A’’ has large variations
of the contact potential across the surface [see Figs. 3(a)
and 3(c)]. The variations of the contact potential depend on

FIG. 2 (color online). Left axis shows the Allan variance vs the
integration time for several drive voltages: 500 �V (red), 10 mV
(black), and 50 mV (blue). The right axis shows the equivalent
gradient force sensitivity. The distance between the membrane
and the sphere is 1 �m. Inset, mechanical resonance
Q ¼ 14 000.
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the relative position between the sphere and the nanomem-
brane in x, y and z. Because of the nonuniform contact
potential across the surface, the contact potential Vm also
largely depends on the distance between the sphere and
the nanomembrane [see Fig. 3(d)]. These variations of the
contact potential create an electric field between the sphere
and the nanomembrane [12]. Because the energy of this
field depends on the distance between the sphere and the
membrane, there is a residual electrostatic force that ap-
pears. As mentioned above, this force can not be com-
pletely canceled by applying a voltage between the sphere
and the nanomebrane [12,24]. In Fig. 4(a) we show the
contributions for this sample of the Casimir force and the
residual electrostatic force. Because variations of the sur-
face potential are large, the dominant force is electrostatic
with the Casimir force a negligibly small fraction. The
residual electrostatic force is well described by the model
of Eq. (5) where Vrms ¼ 0:14 V.

However, for the sample labeled ‘‘B’’ the spatial varia-
tion of the contact potential Vm is very small [see Figs. 3(b)
and 3(c)]. Because of the small variation of the surface
contact potential, the variation of the contact potential with
the distance is also small [see Fig. 3(d)]. These variations
are small in comparison with the variations of the sample
A. As a consequence, as shown in Fig. 4(b) the electrostatic
force is negligible below 400 nm, but it has to be taken into
account above this distance and it is well described by the
model of Eq. (5).

Hence, because of the smaller electrostatic force,
Sample B is employed for studying the Casimir force.

The fluctuations of the position of the membrane have to
be taken into account [25,26]. The origin of these fluctua-
tions are the roughness which is about 3 nm and the
vibrations of the membrane which have an rms amplitude
of 10 nm. The correction that has to be applied to the
Casimir force and the residual electrostatic force can be
calculated from Eq. (2). Also the distance has to be cor-

rected by a factor
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðArms=zÞ2

p
because it has been

extracted from the electrostatic force.
We further compare our measured results in sample B

with the predictions from the Drude model [2] and the
plasma model with the parameters !p ¼ 7:54 eV and

� ¼ 0:051 eV [5]. With the Drude model, a least squares
fit shows Vrms ¼ 11:6� 0:2 mV with reduced �2 (33 de-
grees of freedom) of 1.07 (probability to exceed 35%). On
the other hand, a fit to the plasma model shows Vrms ¼
8:8� 0:5 mV with a reduced �2 of 1.7 (probability
to exceed 1%), suggesting that the Plasma model is ruled
out to 99% confidence over this distance range. Figure 4(c)
shows the measurements compared with the expected fre-
quency shift due to the Casimir force after correcting the
contribution from the electrostatic patch for both the Drude
and Plasma models.
By employing high-Q nanomembranes with a force

gradient sensitivity of 3 �N=m we measured the Casimir

FIG. 3 (color online). (a) Measured surface potential in volts of
the sample A. The distance between the membrane and the
sphere is 2 �m. The data have been interpolated.
(b) Measured surface potential in volts of the sample B. The
distance between the membrane and the sphere is 0:15 �m. At
2 �m the surface potential variations are too small to be re-
solved. (c) Line scan of surface potential at y ¼ 50�m for the
samples A and B. (d) The contact potential Vm for the samples A
and B vs the distance with the sphere.

FIG. 4 (color online). (a) The measured frequency of sample A
is compared with the expected frequency due to the Casimir
force and the residual electrostatic force. (b) The measured
frequency of sample B is compared with the expected frequency
due to the Casimir force and the residual electrostatic force.
(c) The measured frequency for the sample B is compared with
the expected frequency due to the Casimir force after correcting
the contribution from the electrostatic patch for both the Drude
and Plasma models. The inset shows a detail of the data. The
error variance of the data have several origins such as the
transducer noise and the precise determination of the distance
between the sphere and the membrane.
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force at 100 nm–2 �m separations. Our measurements
show unambiguously that contact potentials play an im-
portant role in the precise measurement of the Casimir
Force. By employing an in-situ surface potential measure-
ments on our nanomembrane, we evaluate this uncertainty
in measurements of the Casimir force. This reveals much
scope for further improvements in accuracy by including
methods to image such potentials on the sphere itself,
which was not done in the measurements reported herein.
Our data set indicates that the Drude model offers a better
description of the mechanism in this range as compared to
the plasma model.
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