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Interacting bosons generically form a superfluid state. In the presence of disorder it can get converted

into a compressible Bose glass state. Here we study such a transition in one dimension at moderate

interaction using bosonization and renormalization group techniques. We derive the two-loop scaling

equations and discuss the phase diagram. We find that the correlation functions at the transition are

characterized by universal exponents in a finite region around the fixed point.
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Disordered quantum systems show a remarkable rich-
ness of phenomena. One of the most spectacular manifes-
tations of the interplay between quantum effects and
disorder is provided by Anderson localization, where the
interference between waves can lead to exponentially
localized wave functions. For noninteracting particles,
Anderson localization is by now well understood and has
been spectacularly tested in various experiments ranging
from microwaves to cold atoms [1]. The situation is con-
siderably more complex when interactions are present, and
a full understanding of disordered interacting quantum
systems is largely still missing. Among such systems,
particularly interesting are disordered bosons. Indeed in
the absence of disorder, interacting bosons are expected to
undergo a Bose-Einstein condensation and to become
superfluid (SF), and hence naively should be able to resist
disorder. One can thus expect the competition between
disorder and interactions to be particularly relevant in
that case. In addition since all noninteracting bosons col-
lapse into a disorder-created lowest energy state, interac-
tions must be included from the start to understand this
competition.

Indeed it was shown by a renormalization group (RG)
analysis [2] that disordered interacting bosons would
undergo a phase transition between a SF and a localized
phase. This transition and this phase, nicknamed Bose
glass (BG), was also shown [3] by scaling arguments to
exist in higher dimensions. In one dimension the SF-BG
transition is in the Berezinskii-Kosterlitz-Thouless (BKT)
universality class, and universal exponents at the transition
exist for the various correlation functions, in particular the
single particle one. One interesting possibility, which was
argued in [2], was the possibility of the existence of two
localized phases, the BG corresponding to a strong inter-
action, strong disorder fixed point while another would
correspond to a weak interaction, strong disorder fixed
point. These predictions on the phase diagram and the
flow were found to be in good agreement with numerical
studies of this problem [4,5].

Recently this problem has regained a considerable

interest thanks to its remarkable realization in cold atomic

gases [6–8]. On the theoretical side, new studies focused

on the low interaction, strong disorder case [9–12]. In

particular using a real-space renormalization group study

of a related disordered Josephson junction array model a

BKT-like transition was found again, but now the Luttinger

parameter takes disorder dependent value at the transition

[13]. These results are thus in contradiction with the uni-

versal exponent found by the RG analysis [2] for inter-

mediate interactions, which would then suggest the

existence of two distinct phases. It is thus important to

ascertain that the universality of the exponent found in [2]

is not an artefact of the use of the lowest order RG but

survives if higher order is taken into account. This is

important in view of what can happen for other disordered

systems such as the Cardy-Ostlund model [14] for which

some nonuniversal terms are generated at next order. In

addition pushing the RG flow to the next order is also

useful in view of the comparison with, e.g., numerical

studies of the phase diagram.
In this Letter we perform an analysis of the SF-BG

transition using a Luttinger liquid (LL) description of the

interacting bosons and find an RG flow to second order in

disorder. We show, both from the RG flow and from

symmetry arguments, that the exponents remain universal

at the transition whenever the LL description can be used.

This implies that the exponents will stay universal on at

least a part of the phase diagram. If there are indeed

varying exponents at weak interactions, a transition be-

tween two localized phases must exist. We also clarify the

respective influences of the forward and backward scatter-

ing on the impurities and compute the single particle and

density correlation functions.
We describe a quantum interacting Bose fluid in one

dimension. Its low energy properties can be described by
the Tomonaga Luttinger liquid model [15] which corre-
sponds to the Hamiltonian
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H0 ¼ @

2�

Z
dx

�
vK½@x�ðxÞ�2 þ v

K
½@x’ðxÞ�2

�
; (1)

where v denotes the sound velocity and K is a dimension-
less Luttinger parameter. The fields � and ’ satisfy
½�ðxÞ; @y’ðyÞ� ¼ i��ðx� yÞ. The density of particles

reads �ðxÞ¼�0þ2�1@x’ðxÞþ2�2 cos½2’ðxÞ�2��0x�,
where �1 ¼ �1=2�, �0 is the average density, and �2 is
a nonuniversal constant. For a local repulsion g between
bosons, one has 0< 1=K < 1 for 0< g<1 [16].

In addition we put the system in a disordered potential:

Hd ¼
Z

dxf2�1�ðxÞ@x’þ �2½��ðxÞei2’ þ H:c:�g; (2)

where we distinguish the forward � and backward �
scattering part of disorder with Fourier components around
momenta 0 and �2��0, respectively [15]. We assume

Gaussian disorder with correlations �ðxÞ�ðx0Þ ¼
@
2Df�ðx� x0Þ, �ðxÞ��ðx0Þ ¼ @

2Db�ðx� x0Þ while the

other correlations vanish. By . . . we denote the
disorder average. The total Hamiltonian of the system is
H ¼ H0 þHd.

We average over disorder using the replica trick. The
replicated Euclidean action is S ¼ S0 þ Sf þ Sb. The qua-

dratic part reads

S0
@

¼ v

2�K

Z
x�
�

�
ð@x’�Þ2þ 1

v2
ð@�’�Þ2þm2ð’�Þ2

�
; (3)

where ’�ðx; �Þ is a set of bosonic fields. Here � ¼ 1 . . . n,
and the limit n ! 0 has to be taken in the end. We intro-
duced the shorthand notation

R
x�
�
. . . � P

�

R
dxd� . . . ,

where Greek letters denote replica indices. As an infrared
cutoff we introduced a small mass m which will be sent to
zero at the end of calculations. The disorder part of the
replicated action reads

Sf
@

¼ �2�2
1Df

Z
x��0
�	

½@x’�ðx; �Þ�½@x’	ðx; �0Þ�; (4)

Sb
@

¼ ��2
2Db

Z
x��0
�	

cos½2’�ðx; �Þ � 2’	ðx; �0Þ�: (5)

Introducing the Fourier transform one can diagonalize
the harmonic terms (3) and (4) in S. The correlation
function G�	ðx; �Þ ¼ h’�ðx; �Þ’	ð0; 0Þi is then written

[17] as G�	 ¼ G��	 þGf, with

Gðx; �Þ ¼ K

2
K0ðm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ v2�2 þ a2

p
Þ; (6)

GfðxÞ ¼ �2K2

v2

�2
1Df

m
e�mjxjð1�mjxjÞ: (7)

Here the parameter a has been introduced as the ultraviolet
cutoff, and h. . .i is the average with respect to the harmonic
part ðS0 þ SfÞ=@. K0 denotes the modified Bessel function

of the second kind [18].
To treat the backward scattering part of the disorder, we

use a field theoretic approach [19–21] to obtain the effec-
tive action � of the model. For an action Sð’Þ, it is defined
as �ð’Þ ¼ J’�WðJÞ, where WðJÞ is the generator

of connected correlations given by WðJÞ ¼
ln
R
D’e�Sð’Þ=@þJ’. Using JðxÞ ¼ ��

�’ðxÞ , we obtain [19]

�ð’Þ ¼ � ln
R
D
e�Sð’þ
Þ=@þ

R
dx
ðxÞð��=�’ðxÞÞ. This gen-

eral equation can be solved perturbatively, order by order
with respect to the small parameter Db [21]. The perturba-
tive expansion of the effective action contains all the
information about critical properties of our model (at the
first two orders in Db, in our case). In order to derive the
scaling equations one should find the divergent terms in �
in the limit a ! 0. After expanding the operators one
finally obtains the effective action [22]

� ¼ X
�

Z
dxd�

�
v

2�K
½ð@x’�Þ2 þm2ð’�Þ2� þ

�
1

2�Kv
þ 2Ba1 þOðB2Þ

�
ð@�’�Þ2

�
� ½2�2

1Df þ 2B2b2�

�X
�	

Z
dxd�d�0½@x’�ðx; �Þ�½@x’	ðx; �0Þ� � ½Bþ 2b1B2�X

�	

Z
dxd�d�0 cos½2’�ðx; �Þ � 2’	ðx; �0Þ�; (8)

where we have introduced B ¼ �2
2Dbe

�4Gð0;0Þ. The
coefficients a1, b1, and b2 read a1¼

R
d��2½e4Gð0;�Þ�1�,

b2 ¼
R
dxd�d�0x2½e4Gðx;�Þ � 1�½e4Gðx;�0Þ � 1�, and b1 ¼R

dxd�d�0f2ðx; �; �þ �0Þ, where f2ðx;�;�0Þ¼
e4Gðx;�Þ�4Gðx;�0Þþ4Gð0;���0Þ�e4Gðx;�Þ�e�4Gðx;�0Þ�e4Gð0;���0Þþ
2þ4½e4Gð0;���0Þ�1�½Gðx;�0Þ�Gðx;�Þ�.

We can now calculate the unknown parameters in (8).
Introducing the small parameter � ¼ K � 3=2, which

measures the distance from the critical point (see below),
and using (6) we get

a1 ¼ �2�þ ��2 � 4ðln2� 1Þ��þOð�2Þ þ 2c1
2ðcmvÞ3 ; (9)

where � ¼ lnc2m2a2, c ¼ e�E=2, �E is the Euler constant,
and c1 is a constant. The next two terms are
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b1 ¼ �½9�2 þ 2ð51� 54 ln2Þ�þOð�Þ þ 4c2�
8v2ðcmÞ3 ; (10)

b2 ¼ 2�

v2ðcmÞ6
1

a
½1þOð�Þ�: (11)

The effective action (8) has divergencies when ma ! 0
contained in �. In order to remove them we introduce a set
of renormalized coupling constants (denoted by the sub-
script R) by D ¼ ZbDR, v ¼ ZvR, � ¼ Zð3=2þ �RÞ �
3=2, K ¼ Zð3=2þ �RÞ, mR ¼ m where

Zb ¼ 1� 1

2
½ð39� 54 ln2þ 9c1ÞDR þ 2�R��

þ 1

4
ð9DR þ 2�2

RÞ�2 �DRð6c1 þ c2Þ; (12)

Z ¼ 1� ½3DR þ ð6 ln2� 4ÞDR�R��þ 3

2
DR�R�

2

þ 3c1DR þ 2c1DR�R: (13)

We introduced the dimensionless disorder strength
D¼��2

2a
3Db=v

2. The effective action expressed in terms
of renormalized quantities does not contain divergencies.
This leads to the RG equations of the coupling constants,
obtained by requiring that derivatives of the initial cou-
pling constants with respect to mR nullify. They read

dDR

d‘
¼ �2DR�R þ AD2

R þOðD2
R�RÞ; (14)

d�R

d‘
¼ �9DR þ BDR�R þOðD2

RÞ; (15)

d

d‘
ðaDfRÞ ¼ 0;

d

d‘

�
vR

KR

�
¼ 0; (16)

where ‘ ¼ � lnmR. The constants A ¼ 54 ln2� 39� 9c1
and B ¼ 6� 18 ln2þ 9c1 depend on the details of the
choice of regularization in Eq. (3) [23]. However, their sum

Aþ B ¼ 36 ln2� 33; (17)

is a universal number for the model. Equations (14)–(17)
are the main results of this Letter.

At the first order in the backward scattering (i.e., putting
A ¼ B ¼ 0) the above equations are identical to those first
derived in Giamarchi and Schulz [2] (see also [15]). One
could notice the absence of renormalization to v=K which
is an exact result in all orders due to the statistical sym-
metry ’ðx; �Þ ! ’ðx; �Þ þ wðxÞ of the disordered part of
the action [24,25]. The second order terms are novel and
lead to additional insight in the physics of the SF-BG
transition for this model. At the fist order in Db no off-
diagonal (in replica space) renormalization of the quadratic
action could be generated, for trivial reasons. The second
order is the lowest order at which such terms might in

principle appear. From (8) we see that no such terms are
generated, except for terms describing the forward scatter-
ing process, which have no consequences for the localiza-
tion properties of the system. In addition, the forward
scattering terms contain no divergence, and hence there
is no renormalization of Df. The quadratic part of the

effective action thus remains, even to the order D2
b essen-

tially diagonal in replica. The transition between the SF
and the BG phase can thus be fully characterized by the
two parameters K and Df, and not, like in other models

such as the classical Cardy-Ostlund model [14], by a full
set of variables (corresponding to the off-diagonal terms)
that enter into the correlation functions and can affect the
exponents of correlation functions at the transition. This
important result, proven here directly from the RG flow, is
a consequence of the time independence of the disorder
[26]. Indeed for two independent replicas � � 	 before
averaging over disorder one obtains

h’�ðx; �Þ’	ðx0; �0Þi ¼ h’�ðx; �Þih’	ðx0; �0Þi
¼ h’�ðx; 0Þih’	ðx0; 0Þi; (18)

since the disorder does not depend on �. The correlation
(18) is thus time independent. Thus terms such asR
dxdx0d�½@�’�ðx; �Þ�½@�’	ðx0; �Þ� cannot appear in the

effective action, at any order, since they would lead to time
dependence for (18). This has important consequences for
the physical properties at the separatrix between the phase
for which the disorder is irrelevant (Db ! 0) and the phase
for which the disorder is relevant (the BG phase). The
absence of such off-diagonal replica terms thus leads to a
universal value of the parameter K, namely Kc ¼ 3=2, and
correlation functions will thus decay with a universal ex-
ponent at the transition. Our analysis thus confirms that the
SF-BG transition around the value K ¼ 3=2, i.e., for inter-
mediate interactions, has a generic universal exponent in a
finite region around that point. This puts stringent con-
straints on the phase diagram, as schematized in Fig. 1.
Indeed this result that uses the bosonization representation
of the disordered Bose gas is guaranteed to work when the
disorder is weaker than the chemical potential. This means
that for a good part of the SF-BG boundary the exponent
will remain constant. What happens for larger disorder or
weaker interactions is still an open question. One possibil-
ity is of course that the exponent remains universal along
the whole line. In that case, there is most likely a unique
BG phase. The only singular line of the phase diagram
would be in that case, the noninteracting line U ¼ 0 for
which the bosons are localized by rare events of the ran-
dom potential in a finite region of space. However if for
weak interactions one can obtain nonuniversal exponents at
the transition SF-BG as discussed in [13], it is then impos-
sible to smoothly connect the two separatrices between the
SF and the BG. It would thus imply that there is on the
separatrix a critical point above which the exponents would
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be universal and below which they would vary with
parameters. This would result in two different localized
BG phases, as was argued as one of the possible scenarios
in [2]. A possible order parameter distinguishing these two
localized phases might be the moments of SF stiffness
distributions. An interesting question is whether a similar
mechanism occurs inside the superfluid as well (see,
e.g., [27]).

The SF-BG transition can be seen directly from the
superfluid correlation function, which will go from a di-
vergent power law behavior in the SF phase to an expo-
nentially decreasing one in the localized phase. Varying the
strength of the disorder and of the interactions allows us to
probe the universality of the exponent at the transition.
Such behavior can be probed in cold atomic systems or in
magnetic insulators [28–31]. Cold atoms offer the advan-
tage of the control over disorder and interactions. However
optical lattice systems suffer from the inhomogeneity due
to the confining potential, which complicates the analysis
of the exponent. Atom chips realizations are up to now
limited to relatively small interactions (K � 40). Magnetic
insulators are very homogeneous and allow precise control
and measurement of the boson density and compressibility.
Controlling the disorder is, however, more challenging.
There is no doubt that for both types of systems these
difficulties will be overcome in the future, allowing reli-
able answers to the above points.

Let us now use our improved RG flow to investigate
more quantitatively the behavior close to the transition.
The solution of the flow equations (14) and (15) is

�2
R � 9DR � A�RDR þ 2ðAþ BÞ�3

R=27 ¼ C; (19)

where C is an arbitrary constant, and C< 0 (C> 0) marks
the insulating (SF) phase. For C ¼ 0 the system is at the
critical line, where DR ¼ ð�R=3Þ2 þ ð2B� AÞ�3

R=243þ
Oð�4

RÞ. Then we obtain the solution of (15) at large scales

�Rð‘Þ ’ 1

‘
þ ðAþ BÞ

27

ln‘

‘2
: (20)

In general the solution of RG equations (19) is nonuniver-
sal. However along the critical line �Rð‘Þ is universal since
the invariant of the model (17) emerges, which in turn
determines universal form of the correlation functions at
the transition, as shown below. SinceDR � �2

R close to the
transition the neglected term OðB2Þ in (8) would produce
OðD2

RÞ in (15), which is beyond the two-loop order we
consider. The correlation length close to the critical line
from the insulating side (C< 0) takes the form � /
expð�= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9DR��2
R

p
Þ½1þOð�RÞ�. Therefore higher order correc-

tions do not affect � in an essential way and the transition is
of BKT type [2].
The two-loop RG also allows us to compute the single

particle correlation function FðxÞ ¼ h�ðxÞ�yð0ÞiH at the
transition with improved accuracy. It can be obtained from

the Euclidean action S as FðxÞ ¼ �0hei½�ðx;0Þ��ð0;0Þ�iS.
Performing the perturbation theory with respect to (5)
and taking into account the flow of parameters, one obtains
for jxj � a

FðxÞ ¼ �0

�
a

jxj
�ð1=3Þ�

ln
jxj
a

�
2=9

�
1� 2ðAþ BÞ

243

lnlnjxja
lnjxja

�
:

(21)

Note that forward scattering term does not appear in FðxÞ.
In addition to the lowest order result FðxÞ / jxj�1=3 [2], we

find a logarithmic correction ln2=9ðjxj=aÞ. Finally the role
of the universal quantity (17) is found in subleading cor-
rections to FðxÞ in (21).
The 2��0 part of the density-density correlation func-

tion F ðx; �Þ ¼ hei2’ðx;�Þe�i2’ð0;0ÞiS can be obtained in a
similar way. On the separatrix it reads

F ðx; �Þ / exp

�
�8�2 K

2

v2
�2
1Dfjxj

��
a

R

�
3
�
ln
R

a

��2

�
�
1þ 2ðAþ BÞ

27

lnlnRa
lnRa

�
; (22)

where R ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þv2

R�
2

p
�a. The first term of (22) is due to the

forward scattering term, and we see that is comes with
DfK

2=v2 that is not renormalized.

In conclusion, we have computed to two-loop order the
RG equations for interacting disordered bosons. We have

FIG. 1 (color online). Possible phase diagram of a disordered
1D Bose gas as a function of the boson repulsion U and disorder
D. The green dash-dotted line schematically indicates the
boundary below which a bosonization description of such a
problem is guaranteed (namely the disorder is smaller than the
chemical potential). In this region the superfluid-Bose glass
transition, denoted by the solid blue line, is described by uni-
versal exponents. The question of the nature and critical behav-
ior of the transition in the regime for which bosonization cannot
be directly applied is yet open (see text). One possibility (not
shown on the figure) is that the exponent remains universal along
the whole SF-BG line, leading to a single BG phase. The only
singular line is then the noninteracting bosons (U ¼ 0) which are
localized by rare events of the disorder and indicated by the blue
box. The other possibility (shown in the figure), is that if at small
interaction, there are nonuniversal exponents along the dashed
blue line, then this forces the existence of a critical point on the
SF-BG boundary between the nonuniversal and universal regime.
This would imply the existence of two distinct BG phases.
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shown, both from the RG and from general arguments that
in the regime described by bosonization (intermediate
interactions) the separatrix between the BG and SF is
characterized by a universal exponent. We computed the
single particle and density-density correlations at the
transition. Our calculation uses bosonization and there-
fore also applies to disordered fermions. Detailed aspects
of that and the details of calculation will be published
elsewhere.
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