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It has been recently suggested that the Bose-Einstein condensate formed by excitons in the dilute limit

must be dark, i.e., not coupled to photons. Here, we show that, under a density increase, the dark exciton

condensate must acquire a bright component due to carrier exchange in which dark excitons turn bright.

This, however, requires a density larger than a threshold which seems to fall in the forbidden region

of the phase separation between a dilute exciton gas and a dense electron-hole plasma. The BCS-like

condensation which is likely to take place on the dense side, must then have a dark and a bright

component—which makes it ‘‘gray.’’ It should be possible to induce an internal Josephson effect between

these two coherent components, with oscillations of the photoluminescence as a strong proof of the

existence for this ‘‘gray’’ BCS-like exciton condensate.
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Wannier excitons have been under extensive studies for
decades. Made of two fermions, they are bosonic particles.
So, as pointed out long ago [1], a dilute gas of excitons
should undergo a Bose-Einstein condensation. The carrier
mass being very light and Coulomb attraction quite re-
duced by the large crystal dielectric constant, the exciton
Bohr radius aX is two orders of magnitude larger than the
hydrogen atom Bohr radius. So, many-body effects con-
trolled by the dimensionless parameter � ¼ NðaX=LÞD
where N is the exciton number, L the sample size and
D the space dimension, can easily be made significant for
N not too large. The most dramatic one is the Mott disso-
ciation of excitons into an electron-hole plasma [2] when
the distance between two excitons is of the order of their
size. Actually,�� 1most often fall in an instability region
with phase separation between a dilute exciton phase and a
dense electron-hole phase. In Si and Ge [3,4], this exciton
dissociation is spontaneous at T ¼ 0 because the lowest
energy phase is the high density electron-hole plasma
which is stabilized by the multivalley structure of the
conduction band. In the case of direct gap semiconductors,
a similar phase separation can occur at T ¼ 0, but only
under a density increase [5,6].

The exciton composite nature also appears through the
fact that excitons come in ‘‘bright’’ and ‘‘dark’’ states.
Bright excitons, coupled to �� photons, are made of
(� 1=2) conduction electrons and (� 3=2) valence holes.
Carrier exchanges, however, transform two opposite spin
bright excitons (þ 1) and (� 1) into two dark excitons
(þ 2) and (� 2), these (� 2) excitons being made of
(� 1=2) conduction electrons and (� 3=2) valence holes.
These dark excitons have actually a lower energy than
bright excitons. Indeed, in addition to the intraband
Coulomb processes responsible for the dominant part of

the exciton binding energy, interband Coulomb processes
also exist in which one conduction electron returns to the
valence band while one valence electron jumps in a con-
duction state. By just writing [7] that the electron con-
serves its spin when it changes from a conduction state
with orbital momentum l ¼ 0 to a valence state with orbital
momentum l ¼ 1, it is possible to show that the electron-
hole pair which undergoes these interband processes must
be bright. Since Coulomb interaction between electrons
is repulsive, bright excitons thus have an energy slightly
higher than the dark exciton energy. As a result, if a Bose-
Einstein condensation of excitons occurs, this must be in
these lowest energy dark states [8]. Note that, even if
excitons are formed from photon absorption in states which
are bright by construction, two opposite spin bright exci-
tons can turn dark by carrier exchange. We must actually
mention, as it has been pointed out by Ali Can and
Hakioglu [9], that (� 3=2) holes are not ‘‘pure’’. Indeed
spin-orbit coupling leads to a (� 3=2) quantification axis
along the hole momentum kh. So, the linear combination
of electron-hole pairs (ke ¼ pþ k, kh ¼ �p), making
exciton with center-of-mass momentum k, are not only
made of pair (� 1=2, �3=2) states, but also contains a
small (� 1=2, �3=2) component. As a result, a dark con-
densate is not completely dark but it has a small bright
component even in the extreme dilute regime.
Experimentally, the search for an exciton Bose-Einstein

condensate has essentially been made up to now through
photoluminescence experiments. With a dark exciton con-
densate, there was definitely no hope to evidence it in this
way. To possibly ‘‘see’’ a dark condensate, it is somewhat
mandatory to first know where it is located spatially, i.e., to
trap it. The center of the trap should then turn dark when
condensation occurs [7]. Snoke and coworkers [10] have
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seen such a darkening under a temperature decrease, using
a trap obtained by applying a local negative pressure. A
cleaner way to trap excitons has been recently proposed
[11] through two counter-propagating laser beams with
linear polarization. The field modulation can then equally
trap bright and dark excitons through carrier exchanges
with different components of the light.

However, there is a major common problem in all ex-
perimental searches for exciton Bose-Einstein condensa-
tion. Since experiments are performed at some not so low
temperature, one needs an exciton density n ¼ N=LD

high enough to have the critical temperature Tc for the
condensation above the experimental temperature, since

for example, in 3D, Tc � n2=3 in the case of dilute gases.
On the other hand, the fact that the dark exciton condensa-
tion prevails over condensation in bright states is a result
which has been obtained in the dilute limit, where inter-
actions can be safely ignored. One may wonder if this
remains valid when the exciton density is high enough
for interactions to become significant.

In this Letter, we will show that, under a density in-
crease, the dark exciton condensate must acquire a bright
component, due to carrier exchange in which dark excitons
turn bright. We find that this occurs only when the density
is larger than some threshold, the existence of a fully
dark condensate [8] being valid over a whole range of
low densities. Nevertheless, this appearance of a bright
component is in itself quite interesting. This makes the
condensate look ‘‘gray,’’ which should make it much easier
to observe. However, our evaluation of the density thresh-
old for standard situations puts the appearance of this gray
condensate in the forbidden region of the Mott dissociation
transition. Hence, this gray condensate should actually
appear in a dense electron-hole plasma, and no longer in
a fairly dilute exciton gas. However, it is not possible to
have strictly speaking a Bose-Einstein condensation in a
dense electron-hole system. This would make this gray
condensate unobservable.

Nevertheless, a similar condensation may occur in a
dense system, as pointed out by Keldysh and Kopaev
[12]. Instead of an excited semiconductor, they considered
a semimetal with both electrons and holes present at ther-
modynamical equilibrium. They showed that the Coulomb
attraction between an electron and a hole, although
strongly reduced by free carrier screening, leads to the
formation of pairs, in the same way as the small phonon-
mediated attraction between two electrons produces a BCS
condensate of Cooper pairs in standard superconductivity.
Such a ‘‘Cooper pair’’ would then be a bound state of a
positively charged electron and a negatively charged hole,
in the presence of an electron Fermi sea and of a hole Fermi
sea. This pair, quite analogous to an exciton, might be
called an ‘‘excitonic Cooper pair.’’ A similar condensation
is expected to occur in a photocreated electron-hole
plasma, turning it into a superfluid condensate.

Actually, this superfluid of excitonic Cooper pairs is not
drastically different from the dark BEC condensate we
have considered. Indeed, early works by Eagles [13] in
the sixties and more recent works by Leggett [14] and
by Nozières and Schmitt-Rink [15], have shown that one
can continuously go from a Bose-Einstein condensate to a
BCS-like condensate. 6Li and 40K ultracold fermionic
gases provide remarkable experimental realizations of
this BEC-BCS crossover [16].
An important difference with atomic gases however is

that no liquid-gas first-order transition has been seen in
these gases. In contrast, such a phase separation is expected
to occur in semiconductors [5,6]. It should be stressed that
a very analogous situation exists in the BEC-BCS transi-
tion of deuterons in symmetrical nuclear matter [17].
In this case too, the dilute side corresponds to a gas of
deuterons whereas, on the dense side, one has Cooper-pair-
like proton-neutron correlations in the presence of Fermi
seas. In this nuclear case, a liquid-gas phase transition is
known to occur, in contrast with cold atomic gases.
In order to establish the appearance of this bright com-

ponent on a strong basis, we are going to concentrate on the
dilute side. Contact with the possible existence of a ‘‘gray’’
phase in the dense electron-hole plasma phase will be made
by extrapolating our result to higher densities. Obviously,
we can not securely claim that this extrapolation will be
quantitatively valid, but we can reasonably expect it to be
at least qualitatively correct. Moreover, it is worth noting
that the range of validity of such extrapolations are often
much wider than what is a priori expected. Monte Carlo
calculations [16] for example show that, in the case of
fermionic ultracold gases, the equation of state based on
the Lee-Huang-Yang expansion [18] stays valid quite
far toward the dense regime where interactions are very
strong.
To present our idea in the simplest way, we first use an

oversimplified model. A more realistic description of the
problem will be given in a second step. We first omit a part
of the fourfold exciton degeneracy and only consider one

kind of bright excitons with creation operators byk and one

kind of dark exciton with creation operators dyk with k
being the exciton center-of-mass momentum. In the very
dilute limit, the exciton effective Hamiltonian reduces to
its kinetic energy terms

Hkin ¼
X

k

k2

2mX

dykdk þX

k

�
�0 þ k2

2mX

�
bykbk (1)

where mX is the exciton mass, and �0 is the dark exciton
binding energy compared to the bright state. Since �0 is
positive, of order of a few tens of �eV, the T ¼ 0 ground
state is a Bose-Einstein condensate of dark excitons.
However, this conclusion changes outside the very dilute
regime due to interactions. At low temperature, we may
restrict them to their s-wave component, which implies
that we can take them wave vector independent. In our
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oversimplified model, we only keep the term which is
crucial to our conclusion, namely the one which describes
the conversion of two dark excitons into two bright ex-
citons and conversely. The interaction term then reduces to

Hint ¼ gdb
X

ki

ðbyk1
byk2

dk3
dk4

þ H:c:Þ (2)

with k1 þ k2 ¼ k3 þ k4 due to momentum conservation.
For a macroscopic occupancy of dark exciton states, this
term brings an induced macroscopic occupancy of bright
states. Let us now show that this is energetically favorable.
Such an idea is somewhat analogous to what occurs in a
two-level system where any coupling between levels
lowers the ground state energy.

We can handle this problem to lowest order in the
interaction by using mean field theory. The macroscopic
occupancies of the dark and bright exciton states with
momentum ki ¼ 0, then appear through the standard
[19] mean field substitution d0 !

ffiffiffiffiffiffi
Nd

p
ei’d and b0 !ffiffiffiffiffiffi

Nb

p
ei’b , where Nd and Nb are the number of dark and

bright excitons in the sample, fNd; ’dg being conjugate
variables, as well as fNb; ’bg. The Hamiltonian H ¼
Hkin þHint then has the classical limit

H ¼ �0Nb þ 2gdbNdNb cos½2ð’b � ’dÞ�: (3)

We note, from dimensional arguments, that gdb must
depend on sample size L as 1=LD.

The above expression is very similar to the classical
Hamiltonian appearing, for example, in a Josephson junc-
tion [20], in the macroscopic description of atomic Bose-
Einstein condensate in double wells [21] or in the dynamics
[22] of superfluid 3He phases. Analogy with this last case
leads us to predict the existence of an internal Josephson
effect in the excitonic condensate, with an internal flow of
excitons between the dark and the bright condensate, asso-
ciated to the oscillation of the relative phase’ � ð’b � ’dÞ
of these two components. Since the magnetic moments of
dark and bright excitons are different, it should be possible
to excite this Josephson oscillation by a rf field.

Coming back to Eq. (3), we see that the energy is
minimum for 2’ ¼ 0 or �, depending on the sign of gdb;
so, gdb cosð2’Þ can be replaced by�jgdbj at the minimum.
Minimization of the total energy at fixed exciton number
N ¼ Nd þ Nb then leads to a bright exciton number, at the
minimum, equal to

Nð0Þ
b ¼ N

2
� �0

4jgdbj �
N � Nc

2
: (4)

A threshold Nc ¼ �0=2jgdbj thus exists for the appearance
of a bright component in the condensate. For N <Nc, the
Bose-Einstein condensate is made of dark excitons only, as
in the very dilute limit, and there is no bright excitons at
T ¼ 0. By contrast, for N >Nc, the condensate is made of
a coherent combination of a dark and a bright condensate,

namely ðdyÞN�Nð0Þ
b ðbyÞNð0Þ

b jvaci at zeroth order in the
interaction.
To derive the equations ruling the internal Josephson

effect, we proceed as usual. The total number of excitons
N ¼ Nd þ Nb being conserved, it is convenient to take
�N � ðNb � NdÞ=2 and ’ as conjugate variables. The

corresponding Hamilton equations _�N ¼ @H =@’ and
_’ ¼ �@H =@�N then describe the Josephson effects.
In particular, at small departure from equilibrium Eq. (4),
the resulting linear equations give rise to harmonic oscil-
lations with frequency !J:

@
2!2

J ¼ 32g2dbN
ð0Þ
d Nð0Þ

b ¼ 2�20

�
N2

N2
c

� 1

�
: (5)

For �0 ’ 10 �eV, this gives !J ’ 1010N=Nc, far from
threshold, putting it in upper GHz range. On the other hand
this frequency goes to zerowhenN ¼ Nc. Note that it should
be possible to change Nc by applying a magnetic field.
We now consider a more precise description of the

problem, still on the dilute side [23]. We take into account
the fact that dark and bright excitons come in two polar-
izations. Since the exciton wave vectors k are equal to zero
in the condensed state, we can avoid writing them. We note

as by� the creation operator of bright exciton with spin �1

and similarly dy� for dark exciton with spin �2. The
interaction Hamiltonian, with all possible scattering pro-
cesses between dark and bright excitons, then reads

Hint ¼ vdd

X

�

dy�dy�d�d� þ vbb

X

�

by�by�b�b�

þ vdb

X

��0
dy�by�0b�0d�

þ gdb
X

�

ðby�by��d��d� þ H:c:Þ (6)

with ð�;�0Þ ¼ �. The two first terms of Hint describe the
effective scattering between two dark or two bright exci-
tons with same spin. Note that we have not included in
Eq. (6) the two terms describing the scattering between two
dark or two bright excitons with opposite spin, because in
the quantitative evaluations (see Ref. [24]) made below
their contribution is completely negligible. The third term
describes the effective scattering between a bright and a
dark exciton. The last term, which is the conversion term
considered in Eq. (2), describes the scattering between two
dark excitons with opposite spins into two bright excitons
with opposite spins. Note that all the parameters appearing
in Eq. (6) actually depend on the specific system under
investigation, be it a bulk semiconductor or one of the
various quantum wells with indirect excitons which are
actively studied experimentally because of their long
excitonic lifetime.
The mean field substitution now reads d� ! ffiffiffiffiffiffiffiffiffi

N�2

p
ei’�2

and b� ! ffiffiffiffiffiffiffiffiffi
N�1

p
ei’�1 , where fNs; ’sg are conjugate

variables, Ns being the number of excitons with spin
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s ¼ �2 or �1. The classical Hamiltonian associated with
Hkin þHint appears as

H ¼ �0ðN1 þ N�1Þ þ vddðN2
2 þ N2

�2Þ
þ vbbðN2

1 þ N2
�1Þ þ vdbðN1 þ N�1ÞðN2 þ N�2Þ

þ 4gdb
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N1N�1N2N�2

p
cos� (7)

where � ¼ ’1 þ ’�1 � ’2 � ’�2.
We then proceed just as above. We minimizeH at fixed

numbers of up and down spin electrons, NðeÞ
�1=2 ¼ N�2 þ

N�1 and up and down spin holes,N
ðhÞ
�3=2 ¼ N�2 þ N�1. For

bright excitons photocreated by the absorption of N unpo-
larized photons, these electron and hole numbers are equal
to N=2. So, we end up with N1 ¼ N�1 ¼ N=2� N2 ¼
N=2� N�2. The system classical energy E is then given by:

E ¼ 2N1�0 þ 2vddðN=2� N1Þ2 þ 2vbbN
2
1

þ 4N1ðN=2� N1Þ½vdb � jgdbj�: (8)

For a fixed exciton number N, this quantity is minimum
for a number of bright excitons (þ 1) and (� 1) given by

Nð0Þ
b ¼ Nð0Þ

1 þ Nð0Þ
�1 ¼ 2Nð0Þ

1 with

Nð0Þ
b ¼ N½vdd � vdb þ jgdbj� � �0

vdd þ vbb � 2vdb þ 2jgdbj : (9)

A threshold appears atNc ¼ �0=½vdd � vdb þ jgdbj�. For an
exciton number larger than this threshold, the condensate

reads ðdy2dy�2Þ½N�Nð0Þ
b
�=2ðby1by�1ÞN

ð0Þ
b
=2jvaci at zeroth order in

interactions. However, in the above derivation, we have not
handled the problem raised by the degeneracy between
s ¼ �2 excitons, nor between s ¼ �1 excitons.We believe
that the treatment of this problem along the arguments of
Ref. [8] should also lead to a linear polarization, the conden-

sate then reading ð½dy2 þ dy�2�Þ½N�Nð0Þ
b
�ð½by1 þ by�1�ÞN

ð0Þ
b jvaci.

The above treatment of course implies vdd þ vbb �
2vdb þ 2jgdbj positive. This is actually equivalent to say
that the exciton gas is stable, since the second derivative
with respect toN1 of the energy E given by Eq. (8) is just this
quantity, within a factor of 4. This stability is a consistency
requirement for our Letter. Moreover we do have vdd ¼ vbb

which implies ½vdd � vdb þ jgdbj� also positive.
The effective scatterings introduced in Eq. (6) depend on

the ‘‘in’’ and ‘‘out’’ exciton wave functions. These wave
functions are essentially equal for bright and dark excitons;
so, gdb and the v’s can be taken as equal. At the Born level,
they formally read �ð0000Þ � �exchð0000Þ in terms of the direct

and exchange Coulomb scatterings of the composite boson
many-body theory [24]. For direct Coulomb processes in
which the excitons stay in the relative motion ground
state, we have shown that �ð0000Þ ¼ 0 while the exchange

Coulomb scattering is given in 3D by �exchð0000Þ ¼
�ð26�=3ÞðaX=LÞ3RX, where RX is the exciton Rydberg,
and by �ð8�� 315�3=512ÞðaX=LÞ2RX in 2D [25]. As a
result, all the scatterings considered in Eq. (6) are positive.

We thus end up with ½vdd � vdb þ jgdbj� ’ jgdbj which
indeed is positive.
Using Eq. (9), we then estimate the exciton number

threshold as

Nc � �0
j�exchð0000Þj

� �0
RX

�
L

aX

�
2
: (10)

This exactly is what can be physically guessed. Indeed, the
energy scale for the Coulomb exchange conversion scat-
tering gdb must be the exciton Rydberg RX while the
threshold is reached when the conversion energy wins
over the binding energy �0. For �0 ’ 10 �eV and a carrier
mass 0.1 the free electron mass, Eq. (10) gives a density
threshold Nc=L

2 ’ 109 cm�2.
It is worth stressing that, at our estimated value for the

exciton number threshold Nc, the many-body parameter �
is smaller than 1. This provides a strong justification for
our treatment on the dilute side. Even if the electron-hole
plasma is likely to be physically a BCS-like condensate, it
seems that the experimental densities will rather corre-
spond to the intermediate regime �� 1, analogous to the
one found in cold fermionic gases around unitarity. This
regime is a very complicated one to deal with in a quanti-
tative way. An approach from the dilute side, as we have
done, could actually be quite appropriate.
In conclusion, we have proposed a rather unusual BEC-

BCS crossover between a dilute and a dense electron-hole
system. Indeed, under a density increase, such a system
undergoes a liquid-gas-like first-order transition between a
dilute exciton gas and a dense electron-hole plasma. At low
enough temperature on the dilute side, a Bose-Einstein
condensate of excitons is formed with excitons in a dark
state. On the dense side, the electron-hole plasma undergoes
a BCS condensation of excitonic Cooper pairs in a ‘‘gray’’
state, the condensate having, in addition to its dark compo-
nent, a coherent bright component which results from
Coulomb exchange scattering between dark and bright
excitons. This bright component appears above an exciton
density threshold which falls in the forbidden region of the
first-order transition. The coherence between these two
components should give rise to an internal Josephson effect
with oscillations of the photoluminescence.
We wish to thank Tony Leggett for very enlightening
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of Cooper pairs in electron-hole plasma. We also are ex-
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