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We study the properties of spin systems realized by cold polar molecules interacting via dipole-dipole

interactions in two dimensions. Using a spin wave theory, that allows for the full treatment of the

characteristic long-distance tail of the dipolar interaction, we find several anomalous features in the

ground state correlations and the spin wave excitation spectrum, which are absent in their counterparts

with short-range interaction. The most striking consequence is the existence of true long-range order at

finite temperature for a two-dimensional phase with a broken Uð1Þ symmetry.
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The foundation for understanding the behavior and prop-
erties of quantummatter is based on models with short-range
interactions. Experimental progress in cooling polar mole-
cules [1] and atomic gases with large magnetic dipole
moments [2] has however increased the interest in systems
with strong dipole-dipole interactions.Whilemanyproperties
of quantum systems with dipole-dipole interactions derive
from our understanding of systems with short-range interac-
tions, thedipole-dipole interaction cangive rise to phenomena
not present in their short-range counterparts. Prominent
examples are the description of dipolar Bose–Einstein con-
densates, where the contribution of the dipolar interaction
cannot be included in the s-wave scattering length [3], and
the absence of a first order phase transition with a jump in
the density [4]. In this Letter, we demonstrate anomalous
behavior in two-dimensional spin systems with dipolar
interactions realized by polar molecules in optical lattices.

A remarkable property of cold polar molecules confined
into two dimensions is the potential formation of a crys-
talline phase for strong dipole-dipole interactions [5,6]. In
contrast to a Wigner crystal with Coulomb interactions [7],
the crystalline phase exhibits the conventional behavior
expected for a crystal realized with a short-range repulsion
and the characteristic 1=r3 behavior of the dipole interac-
tion can be truncated at distances involving several inter-
particle separations. Several strongly correlated phases
have been predicted, which behave in analogy to systems
with interactions extending over a finite range, such as a
Haldane phase [8], supersolids [9,10], pair supersolids in
bilayer systems [11], valence bond solids [12], as well as
p-wave superfluidity [13], and self-assembled structures in
multilayer setups [14]. On the other hand, it has recently
been demonstrated that polar molecules in optical lattices
are also suitable for emulating quantum phases of two-
dimensional spin models [15–17].

Here, we demonstrate that such spin models with
dipole-dipole interactions exhibit several anomalous

features, which are not present in their short-range
counterparts. The analysis is based on analytical spin wave
theory, which allows for the full treatment of the 1=r3 tail of
the dipole-dipole interactions. We find that the excitation
spectrum exhibits anomalous behavior at low momenta,
which gives rise to unconventional dynamic properties of
the spin wave excitations. Remarkably, we derive from this
anomalous behavior the existence of a long-range ordered
ferromagnetic phase at finite temperatures; this finding is
consistent with the well-knownMermin–Wagner theorem as
the latter does not exclude order for interactions with a 1=r�

tail, where � � 4 [18–20]. Finally, we show that the dipole-
dipole interaction gives rise to algebraic correlations even
in gapped ground states, in agreement with recent predic-
tions [21,22].
We focus on a set up of polar molecules confined into

two dimensions in a square lattice, with each lattice site
filled by one polar molecule. A static electric field applied
along the z direction splits the rotation levels, and allows us
to define a spin 1=2 system by selecting two states in the
rotational manifold. Then, the Hamiltonian reduces to an
XXZ model with dipole-dipole interaction between the
spins [16]

H ¼ Ja3

@
2

X
i�j

cos�Szi S
z
j þ sin�ðSxi Sxj þ Syi S

y
jÞ

jRi �Rjj3
: (1)

Here, the first term accounts for the static dipole-dipole
interaction between the different rotational levels with
strength J cos�, while the last term describes the virtual
exchange of a microwave photon between the two polar
molecules with strength J sin�, and a denotes the lattice
spacing. The dependence of the couplings J and � on the
microscopic parameters is discussed in Refs. [16,17,23]
and the one-dimensional version of this model has recently
been studied in Ref. [24].
Before analyzing this spin model on the square lattice, we

present a summary of the phase diagram for its counterpart
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with nearest neighbor interactions only. Then, the phase
diagram is highly symmetric and exhibits four different
phases: (i) an Ising antiferromagnetic phase (I-AF) for
��=4< �< �=4 with an excitation gap, (ii) an XY anti-
ferromagnetic phase (XY-AF) for �=4< �< 3�=4 with a
linear excitation spectrum, (iii) an Ising ferromagnetic phase
(I-F) for 3�=4< �< 5�=4 with an excitation gap, and
finally (iv) an XY ferromagnetic phase (XY-F) for 5�=4<
�< 7�=4 with a linear spectrum.

Next, we analyze the modifications of the phase diagram
due to dipole-dipole interactions between the spins within
mean-field theory. The main influence is the reduction of
the stability for the antiferromagnetic phases, as the next
nearest neighbor interaction introduces a weak frustration
to the system. The ground state energy per lattice site
within mean field reduces to eI-AF ¼ J cos��K=4 and
eXY-AF ¼ J sin��K=4 for the antiferromagnetic phases.
The summation over the dipole interaction reduces to a
dimensionless parameter �K � �2:646, which is related to
the dipolar dispersion

�q ¼ X
j�0

eiRjq
a3

jRjj3
; (2)

at the corner of the Brillouin zone K ¼ ð�=a;�=aÞ. In
turn, the ferromagnetic phases are enhanced with a mean-
field energy eI-F ¼ J cos��0=4 and eXY-F ¼ J sin��0=4
with �0 � 9:033. The modifications to the phase diagram
are shown in Fig. 1: first, the Heisenberg points at
� ¼ �=4, 5�=4 are protected by the SU(2) symmetry
and still provide the transition between the Ising and the
XY phases. However, the transitions from the ferromag-
netic towards the antiferromagnetic phase are shifted

to the values �c ¼ arctanð�K=�0Þ � �0:1� and ~�c ¼ �þ
arctanð�0=�KÞ � 0:6�.

The dipole dispersion �q in Eq. (2) converges very

slowly due to the characteristic power law decay of the
dipole-dipole interaction. It is this slow decay, which will

give rise to several peculiar properties of the system.
Therefore, we continue first with a detailed discussion of
this dipolar dispersion. The precise determination of �q is

most conveniently performed using an Ewald summation
[7], which transforms the summation over the slowly con-
verging terms with algebraic decay into a summation of
exponential factors, i.e.,

�q ¼ �2�ajqjerfcðajqj=2 ffiffiffiffi
�

p Þ þ 4�

�
e�a2jqj2=4� � 1

3

�

þ 2�
X
i�0

Z 1

1

d�

�3=2
½e���ðRi=aþaq=2�Þ2

þ �2e���jRij2=a2þiRiq�; (3)

with erfcðxÞ the complementary error function. The impor-
tant feature of the dipole dispersion is captured by the first
term in Eq. (3), which gives rise to a linear and nonanalytic
behavior �q � �0 � 2�ajqj for small values q � 1=a,

while all remaining terms are analytic. It is this linear
part, which will give rise to several unconventional prop-
erties of spin systems in 2D with dipolar interactions, and
is a consequence of the slow decay of the dipole-dipole
interaction. The summation in the last term converges very
quickly and guarantees the periodicity of the dipolar dis-
persion. The quantitative behavior is shown in Fig. 2(a),
and the numerical efficient determination provides �0 �
9:033, and �K ¼ ð1= ffiffiffi

2
p � 1Þ�0 � �2:646. Note, that a

similar linear dependence appears for continuous systems
with dipolar interactions in two dimensions, and gives rise
to a so-called anomalous scattering amplitude [13].
Next, we analyze the excitation spectrum above the

mean-field ground states within a spin wave analysis.
The spin wave analysis is well established [25,26], and
its application for a spin system with dipolar interaction
is straightforward. Details of the calculation are presented
in the Supplemental Material [27] for the XY-AF model.
The results are summarized in Table I and shown in Fig. 2.

FIG. 1 (color online). (a) Mean-field phase diagram for the
XXZ model with dipolar interactions, where tan� is the ratio
between the XY and the Ising spin couplings. (b) Ground state
energy per particle: the dashed lines show the mean-field
predictions, while the solid lines include the contributions
from the spin waves. At the critical values �c and ~�c, the ground
state energy exhibits the jump �ec � 0:14J and �~ec � 0:06J,
indicating the potential formation of an intermediate phase.

FIG. 2 (color online). Spin wave excitations with � ¼ ð0; 0Þ,
M ¼ ð0; �=2Þ, and K ¼ ð�=a;�=aÞ for different � angles.
(a) Spectrum of the I-F phase which also shows the behavior of
the dipolar dispersion �q for � ¼ �3�=4. (b)–(d) Spectrum for

the XY-F, I-AF, and XY-AF phases.
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In the following, we present a detailed discussion for each
of the four ordered phases.

Ising ferromagnetic phase.—The ferromagnetic mean-
field ground state is twofold degenerate with all spins
either point up or down, and is the exact ground state for
� ¼ �, i.e., jGi ¼ Q

ij #ii. Within the spin wave analysis,
the ground state is not modified and the excitation spec-
trum reduces to EI-F

q (see Table I). The spin waves exhibit

an excitation gap �: (i) approaching the Heisenberg point
at � ¼ �3�=4, the excitation gap vanishes, indicating the
instability towards the XY ferromagnet, (ii) in turn, for
antiferromagnetic XY couplings, the gap is minimal at K,

vanishes at the mean-field transition point ~�c, and drives
an instability towards the formation of antiferromagnetic
ordering.

In contrast to any short-range ferromagnetic spin model,
the dispersion relation EI-F

q is not quadratic for small

momenta, but rather exhibits a linear behavior, i.e., EI-F
q �

EI-F
0 þ @cjqj with velocity c ¼ �2�aJ sin�=@, which is a

consequence of the dipolar interaction in the system. This
anomalous behavior strongly influences the dynamics of
the spin waves. The dynamical behavior of a single local-
ized spin excitation is shown in Fig. 3(a) for a Gaussian
initial state. In order to probe the linear part in the disper-
sion relation, the width � of the localization is much larger
than the lattice spacing a, and therefore, the dynamics is
well described by a continuum description. Instead of the
conventional quantum mechanical spreading, one finds a
ballistic expansion of a cylindrical wave packet with
velocity c. In addition, the dipole-dipole interaction also
strongly influences the correlation function. Within con-
ventional perturbation theory, we find algebraic correla-
tions hSxi Sxji � 1=jrj3. This algebraic decay of correlations

even in gapped systems is a peculiar property of spin
models with long-range interactions [21,22].

XY ferromagnetic phase.—Here, the spins are aligned in
the xy plane. Within the spin wave analysis, we obtain the
excitation spectrum EXY-F

q and the modified ground state

energy eXY-F. In the low momentum regime, the dispersion

relation behaves as EXY-F
q � ffiffiffiffiffiffijqjp

, in contrast to the well-

known linear Goldstone modes for the broken Uð1Þ
symmetry. This anomalous behavior is a peculiar property
of the dipolar interaction, and the most crucial consequence

is the existence of long-range order for the continuous
broken symmetry at finite temperatures even in two dimen-
sions [19]. This property follows immediately from the
above spin wave analysis: the order parameter reduces
to m � �m� 1=2 ¼ hSxi i=@, where �m accounts for
the suppression of the order parameter by quantum fluctua-

tions. Within spin wave theory, it reduces to (�m ¼ hayi aii)

�m ¼
Z dq

v0

�
cos��q þ sin�ð�q � 2�0Þ

4Eq

coth

�
Eq

2T

�
� 1

2

�
:

This expression is finite and small: at T ¼ 0, the integrand

behaves as�1=
ffiffiffiffiffiffijqjp

and we find a suppression of the order
�m � 0:008 at � ¼ ��=2. The smallness of this correc-
tions due to quantum fluctuations is a good justification for
the validity of the spin wave analysis. On the other hand,
even at finite temperatures, the low momentum behavior of
the integrand takes the form �T=jqj, and provides a finite
contribution in contrast to a conventional Goldstone mode,
which provides a logarithmic divergence.
The appearance of a long-range order at a finite tem-

perature for a ground state with a broken Uð1Þ symmetry
is a peculiar feature of dipole-dipole interactions, which
renders the system more mean-field-like. The system

TABLE I. Spin wave excitation spectrum E�
q and ground state energy e�.

Ground state � Spin wave excitation spectrum E�
q Ground state energy per spin e�

Ising ferromagnetic phase Jðsin��q � cos��0Þ 3J cos��0
4 þ 1

2

R dq
v0
E�ðqÞ ¼ J cos��0

4

XY ferromagnetic phase J
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin�ð�q � �0Þðcos��q � sin��0Þ

q
3J sin��0

4 þ 1
2

R dq
v0
E�
q

Ising antiferromagnetic phase J
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsin��qþK � cos��KÞðsin��q � cos��KÞ

q
3J cos��K

4 þ 1
2

R dq
v0
E�
q

XY antiferromagnetic phase J
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin�ð�qþK � �KÞðcos��q � sin��KÞ

q
3J sin��K

4 þ 1
2

R dq
v0
E�
q

FIG. 3 (color online). Time evolution for localized spin ex-

citations described by the Gaussian wave packet c 0ðrÞ ¼
e�jrj2=2�2

=
ffiffiffiffiffiffiffiffiffiffi
��2

p
with � � a in the continuum description.

(a) For a linear dispersion cjqj in the I-F phase, the dynamics
is described by cylindrical symmetric wave packets (see inset)
traveling with velocity c, instead of the conventional quantum
mechanical spreading for massive systems. (b) For an anomalous

dispersion with �
ffiffiffiffiffiffijqjp

in the XY-F phase, the behavior at long
times t � ffiffiffiffi

�
p

� reduces to a scaling function �ðzÞ via
jc ðx; �Þj2 ¼ �ðx=�� 1=2Þ=�2 (see inset) using rescaled time
� ¼ t�=

ffiffiffiffi
�

p
and space x ¼ jrj=� coordinates. It describes a

cylindrical symmetric wave front with velocity �
ffiffiffiffi
�

p
.
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therefore exhibits a finite temperature transition at a critical
temperature Tc into a disordered phase; such a behavior is
consistent with the classical XY model with dipolar inter-
actions [19]. The correlation functions determined within
spin wave theory and a high temperature expansion are
summarized in Table II. Note that the spin wave analysis
neglects the influence of vortices. This is well justified
here, as the dipolar interactions give rise to a confining
of vortices; i.e., the interaction potential between a vortex–
antivortex pair increases linearly with the separation
between the vortices.

The spin wave dynamics caused by the anomalous dis-

persion relation� ffiffiffiffiffiffijqjp
is shown in Fig. 3(b) for a Gaussian

wave packet of width �. Interestingly, the propagation
velocity of the wave packets is proportional to

ffiffiffiffi
�

p
and

thus faster for broad wave packets, in contrast to the usual
dispersion dynamics. This is a consequence of the group

velocity vq � 1=
ffiffiffiffiffiffijqjp

which is large for the small momen-

tum components involved in the broad wave packets.
Ising antiferromagnetic phase.—Next, we focus on the

antiferromagnetic phases and start with the I-AF ground
state. Again, the ground state is twofold degenerate on
bipartite lattices. We choose the ground state with spin up
on sublattice A and spin down on sublattice B, i.e., jGi ¼Q

i2Aj "ii
Q

j2Bj #ij. The spin wave analysis is straightfor-

ward (see Supplemental Material [27]), and we obtain the
spin wave excitation spectrum EI-AF

q and ground state en-

ergy I-AF (see Table I). The system exhibits an excitation
gap as expected for a system with a broken Z2 symmetry.
However, the dipole interactions give rise to an anomalous
behavior at small momenta similar to the I-F phase with
EI-AF
q � EI-AF

0 �� sin�jqj. Consequently, the dynamics of

spin waves at low momenta is analogous to the Ising ferro-
magnet (see Fig. 3). Within spin wave theory, we obtain

that the antiferromagnetic correlations hð�1Þi�jS	i S
	
j i and

the ferromagnetic correlations hS	i S	j i decay with the power
law �1=jrj3 with 	 ¼ x, y, z determined by the character-
istic behavior of the dipole-dipole interaction. The excita-
tion gap vanishes approaching the mean-field critical point
�c towards the XY-F phase, and also while approaching the
Heisenberg point at � ¼ �=4. For the latter, the qualitative
behavior of the excitation spectrum changes drastically
within a very narrow range of � [see Fig. 2(c)].

XY antiferromagnetic phase.—Finally, we analyze the
properties of the XY-AF phase. In contrast to the XY-F
phase, the excitation spectrum EXY-AF

q exhibits the conven-

tional linear Goldstone mode [see Fig. 2(d)]. This can be

understood, as the antiferromagnetic ordering introduces
a cancellation of the dipolar interactions, and provides a
behavior in analogy to its short-range counterpart: true long-
range order exists only at T ¼ 0, while at finite temperature
the system exhibits quasi long-range order and eventually
undergoes a Kosterlitz—Thouless transition for increasing
temperature. Nevertheless, the dipole-dipole interactions
give rise to the characteristic algebraic correlations, e.g.,
hð�1Þi�jSziS

z
ji � 1=jrj3 for the antiferromagnetic transverse

spin correlation at zero temperature.
Finally, we comment on the transitions between the

different phases. The spin wave analysis predicts that the
excitation spectrum for each phase becomes unstable at
the mean-field critical points: For the Heisenberg points at
� ¼ �=4, 5�=4, such a behavior is expected due to the
enhanced symmetry and one indeed finds that at the critical
point, the excitation spectrum from the Ising phase coin-
cides with the spectrum from the XY ground state.
Consequently, the spin waves provide the same contribu-
tion to the ground state energy [see Fig. 1(b)]. In turn, at the

instability points �c and ~�c, the excitation spectrum from
the antiferromagnetic phase is different from the spectrum
for the ferromagnetic F phase. Consequently, the ground
state energy within the spin wave analysis exhibits a jump
[see Fig. 1(a)]. Such a behavior is an indication for the
appearance of an intermediate phase. However, this ques-
tion cannot be conclusively answered within the presented
analysis due to the limited validity of spin wave theory
close to the transition points. However, the appearance of a
first order phase transition can be excluded by arguments
similar to Ref. [4].
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