
Kinematic � Tensors and Dynamo Mechanisms in a von Kármán Swirling Flow
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We provide experimental and numerical evidence of in-blades vortices in the von Kármán swirling flow.

We estimate the associated kinematic �-effect tensor and show that it is compatible with recent models of

the von Kármán sodium (VKS) dynamo. We further show that depending on the relative frequency of the

two impellers, the dominant dynamo mechanism may switch from �2 to ��� dynamo. We discuss some

implications of these results for VKS experiments.
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The dynamo effect is the conversion from mechanical
energy to magnetic energy. It is at the origin of most
magnetic fields in the Universe (the Earth, stars, galaxies,
etc.) and therefore deserves special attention. The
von Kármán sodium experiment (VKS) is at present time
one of the three successful liquid metal dynamo experi-
ments. In this experiment, the mechanical energy is
provided by two iron counter-rotating impellers in a
cylindrical vessel, and the spontaneous conversion into
magnetic energy is obtained as soon as one of the impellers
rotates faster than 16 Hz [1–3]. The process of how this
conversion occurs is, however, still a matter of debate.
Indeed, a quasi axial axisymmetric mean magnetic dynamo
field is observed in VKS experiment, while an equatorial
dipole is expected if the dynamo process only involves the
time averaged axisymmetric mean flow [4]. Several models
have recently been suggested to explain this observation,
based upon the now classical � effect in mean field theory
of dynamo [5,6]: in the presence of a nonaxisymmetric
fluctuating velocity field, the mean VKS magnetic field
satisfies

@thBi ¼ r � ðhui � hBi þ h�Bi � �r� hBiÞ; (1)

where ui and Bi are the velocity and magnetic field, hi
denotes time-azimuthal average and � and � are second-
order tensors depending on hui and u0 ¼ u� hui.
Specifically, it was suggested that vortical coherent struc-
tures in between the impeller blades such as pictured in
Fig. 1(c) generate highly-correlated nonaxisymmetric
velocity-vorticity fluctuations that would result in a non-
negligible � tensor able to produce an axial dipole [7,8].
Kinematic simulations using a numerical model of such
vortices indeed reproduce the growth of an axisymmetric
axial field as observed in VKS experiments [9]. Numerical
simulations [8,10] using ad hoc � tensors in the induction
equation and different boundary conditions satisfactorily
reproduce the large scale structure of the dynamo magnetic
field, provided the nondimensional � parameter is of the
order of 2 (ferromagnetic boundary conditions, [8]) or 0.02
if variations of the permeability due to soft iron are taken

into account [10]. However, no measurements of the
velocity structure in between the blades has been available
so far, preventing check of the plausibility of these
estimates, and, thus, the soundness of these � models. In
the present Letter, we first provide some experimental
evidence of these in-blades vortical structures and give
more quantitative information on their averaged properties
using Reynolds averaged Navier-Stokes (RANS) computa-
tional fluid dynamics (CFD) calculations. We then use
these results to compute the resulting kinematical � effect.
Some implications of these results for VKS experiments
are finally discussed. Depending on the relative frequency
of the two impellers, the dominant dynamo mechanism
may switch from �2 to ��� dynamo, resulting in onset
of dynamical regimes.

FIG. 1 (color online). (a) Geometry of the experiment. The
shaded blue zone denote the rotating fluid volume used in the
numerical simulation. (b) Reconstruction of the dynamo mag-
netic field in a meridional plane in a VKS experiment with
rotating bottom disk and stationary upper disk (after [3]). The
poloidal (resp. toroidal) component is coded with arrows (resp.
color) from blue to red (jet color map). Measuring probes are in
white. (c) Putative in-blades vortice creating the � effect.
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To observe the vortices potentially responsible for the �
effect, we use a von Kármán water experiment which is a
1=2 scale reproduction of the first successful VKS dynamo
experiment described in [1]. Its geometry is summarized in
Fig. 1: the fluid contained in a Plexiglas cylinder of radius
R ¼ 100 mm is stirred by a pair of coaxial impellers
that can be rotated independently at rotation frequencies
f1 and f2 ranging from 1 to 12 Hz. The impellers are flat
disks of diameter 2Rp ¼ 150 mm fitted with either straight

blades or radial blades of constant height hb ¼ 20 mm
and curvature radius 92.5 mm. The inner faces of the
discs are H ¼ 180 mm apart. Velocity measurements are
performed with a laser doppler velocimetry (LDV) and
a stereoscopic particle image velocimetry (PIV) system
provided by DANTEC dynamics. In the sequel, we use R
and T ¼ 1=�ðf1 þ f2Þ as units of length and time.

In the VKS experiment, dynamo regimes have been
observed for a wide variety of rotating frequencies
(f1, f2) [2]. For simplification, we focus here on the
simplest case where the top disk is fixed and the bottom
disk is rotating, with the convex face of the blades pushing
the fluid forward: ðf1; f2Þ ¼ ð1=ð�TÞ; 0Þ. In such a
case, dynamo action is observed for f1 > 16 Hz through
a nearly axisymmetric dipolar dynamo field, with azimu-
thal component localized at each impeller [[3,11] and
Fig. 1(b)]. Figure 2(a) shows the mean time-averaged non-
dimensional velocity on a half meridional plane measured
by PIV in the experiment. It consists in a fully nonsym-
metric flow, with the outside radial part rotating as a block
almost at the impeller’s velocity. Due to the observing
angle, this representation does not allow for velocity
measurements inside the blades. Additional measurements
using a LDV system and impellers with straight blades
allow the measurement of the instantaneous azimuthal
velocity component at one point located inside a blade
[Fig. 2(b)]. In this measurement, one observes a modula-
tion of the azimuthal velocity, over a period of 1=8f1 sec
corresponding to one blade crossing. During a period, the
azimuthal velocity first drops, and then catches again with
the velocity of the blade. This drop results in a smaller
averaged velocity (black lower curve) than the impeller
velocity (blue upper curve) and is an experimental evi-
dence of the presence of in-blades vortical movements.

To characterize further these motions, we now perform
numerical experiments with the CFD finite-volume solver
code FLUENT 6.3. The model that has been used is the
stationary realizable k-� RANS model [12]. We ran several
different mesh configurations before reaching a satis-
factory converged solution. It corresponds to a case where
the fluid volume is divided into three parts: one central part
with a typical element size of 3 mm and two volumes
surrounding the impellers 15 mm and 15 mm apart from
the blade tips in resp. the axial and radial direction, with
conformal interfaces. The mesh is refined to 1 mm close to
the blades. The equations are solved in a moving reference

frame in one of these volumes to simulate the impeller’s
rotation. A grid convergence check has been performed
and a stable converged solution with one rotating disk was
found, with torques at both impellers equal to those mea-
sured in the experimental flow within 10 percent. The
result is presented in Fig. 2(c) for the azimuthally averaged
flow. One observes a one cell circulation close to the
experimental one. To quantify this, we present in Fig. 3 a
comparison between the numerical and the experimental
velocity radial profiles at three locations: z ¼ �0:53;
z ¼ 0. The agreement is within 5% in most of the flow.
The CFD solution enables the description of the in-blades
velocity. On Fig. 2(c), one observes an intensification of
the azimutal velocity at the edge of the rotating impeller, as
well as some edge vortices near the top and the bottom
edge. In the stationary impeller, the azimuthal velocity is
slightly negative, so there is a huge differential rotation at
the blades shrouds and tips. The streamlines displayed in
Fig. 2(d) enables the clear visualization of in-blades radial
trailing vortices, that are located behind the blades. Such
vortices can be responsible for a deceleration of the
azimuthal velocity observed in Fig. 2(b).
Using the CFD velocity field, one can compute the

(nondimensional) azimuthally averaged helicity tensor,

FIG. 2 (color online). (a) Nondimensional experimental mean
velocity in a meridional plane. (b) nondimensional azimuthal
velocity in the blades synchronized on the blade crossing vs
nondimensional time. Green points: LDV measurements; red
middle curve: running average; black lower curve: time average;
blue upper curve: blade velocity. (c) Nondimensional numerical
mean velocity. (d) Radial vortices as observed with streamlines
in the CFD simulation.
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hij ¼ �iknhu0k@ju0ni; (2)

where u0 ¼ u� hui is the fluctuating velocity field, hii ¼
TrðhÞ ¼ �hu0i!0

ii is minus the helicity of the fluctuations,
! is the vorticity, and the symbol hi denotes azimuthal
average. The result is displayed in Fig. 4. One sees that the
helicity is mainly concentrated in the impellers, with a
maximum absolute nondimensional value around 1 (corre-
sponding to 100 ms�2 for impeller rotating at 10 Hz). In
the rotating impeller, the largest helicity component is h��

with a value of the order of�0:5. Its value in the stationary
impeller is of opposite sign and slightly larger, 1. This
difference may be explained by the existence of a very
large vertical differential rotation at the stationary impeller,
which can generate a large toroidal vorticity. In the rotating
impeller, other nonnegligible helicity components are
found as h�r and hrz. In the stationary impeller, other fairly

large helicity components are hrr, hr�, hrz,hz�, and hzr (of

the order of �1). We also computed the (nondimensional)
azimuthally averaged Reynolds tensor rij ¼ hu0iu0ji (not

shown). We observed a similar localization of the tensor
in the impellers, with a much smaller value, of the order
of 5� 10�2 (corresponding to 0:5 m2 s�2 for impeller
rotating at 10 Hz). The exact dynamo properties of such
a velocity field would require solving the full kinematic
problem, like in [9]. To get an order of magnitude estimates
of the dynamo efficiency, we may, however, approximate
the fluctuations by a short in time field, since the magnetic
Reynolds number in VKS experiment is rather large
(between 10 and 70) and the turbulence correlation time
is much smaller than the magnetic field diffusive time.
In such a case, one can use the computation of [13],
equation (29); see also [14] to link the helicity and

Reynolds tensor to ��� and ��� as

�ij ¼ �hij; �ij ¼ �rij; (3)

where � is the correlation time of the nonaxisymmetric
velocity perturbations. The CFD simulation provides a
time-independent solution and cannot be used to compute
this correlation time. However, we can use the LDV
measurements in water (see Fig. 2) to estimate that this
time is at most of the order of 1=8f1. Therefore, in non-
dimensional units, � � �=8. This estimate leads to maxi-
mal nondimensional ��� tensors of the order of �0:4 (resp.
�0:2) in the stationary (resp. rotating) impeller, and maxi-

mal nondimensional ��� tensors of the order of 2� 10�2.
Our estimate of ��� using CFD simulations and experiments
can be compared with existing models of the VKS dynamo.
First, we observe that the largest component of the tensor
in the rotating impeller is ���, as assumed in [8,10]. It is

negative, as required for instability [8]. However, its maxi-
mal value is an order of magnitude smaller than the value
j�cj ¼ 2:1 needed to obtain dynamo action with ferromag-
netic boundary conditions at magnetic Reynolds number
reached in the VKS experiment [8]. On the other hand, it is
one order of magnitudes larger than the value needed to
obtain a dynamo action in VKS according to the model
with localized permeability distribution [10]. Given the
uncertainty in evaluation of the correlation time, we may
say that our findings clearly validate the hypotheses of
model of [10], but do not rule those of the model of [8].
Dynamo action may be impeded by a large enough turbu-

lent resistivity, parameterized by �. This effect has been
discarded in the numerical models so far [8,10]. Our esti-
mate shows that this approximation is marginally legiti-
mate in VKS, where the critical magnetic Reynolds
number Rmc � 50 in our time and length units, resulting
in a nondimensional molecular magnetic diffusivity of the
order of 1=Rmc � 0:02, i.e., of the order of the maximal

FIG. 3 (color online). Comparison between numerical (line)
and experimental (symbols) profiles at z ¼ �0:53 (red circles),
z ¼ 0 (green squares), and z ¼ 0:53 (blue triangles). Error bars
are of the order of the size of the symbols. FIG. 4 (color online). Components of the (nondimensional)

azimuthally averaged helicity tensor hij in numerics. The number

in parentheses is the volume averaged value.
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value for the turbulent magnetic diffusivity, resulting in
a 100 percent increase of the total magnetic diffusivity
at Rm ¼ 50. Our finding is in agreement with a recent
estimate of [15] who observed a 50 percent increase of
magnetic diffusivity at Rm ¼ 30, in a nonstationary turbu-
lent flow of liquid sodium, generated in a closed toroidal
channel.

The present computation shows that the in-blade veloc-
ity is the VKS impellers is able to generate sufficient �
effect to produce a dynamo mechanism, provided adequate
boundary conditions [8] or localized permeability distri-
butions [10] are taken into account. The special localiza-
tion of this � effect found in the present study however
calls for further discussion about a qualitative picture of the
VKS one disk dynamo. Indeed, using Eq. (1), one can show
that the poloidal field (r, z component) is generated from
the toroidal field (� component) through the � effect. In
contrast, there are two possibilities (possibly concomitant)
to generate toroidal field from poloidal field: either through
the mean differential rotation �0 ¼ ð1=rÞdhu�i=dz
(� effect) possibly reinforced by the jump of permeability
or conductivity at the impellers [16] and (or) through �
effect. The first case corresponds to a ��� dynamo,
while the second corresponds to an �2 dynamo. Since the
��� tensor varies over a region of size hb, the crossover in
between the two mechanism lies at the critical value
Rp�

0 � �rr=hb. This induces a dissymmetry in between

the two impellers: at the rotating one, the differential
rotation is almost zero �0 � 0 while at the stationary
one, the differential rotation occurs over the height
of the blades, so that in nondimensional shape Rp�

0 �
Rp=hb � 4, i.e., is of the order of �rrR=hb � 4. Therefore,

the dynamo generation is �2 at the rotating impeller, while
it can be a combination of an �2 and an ��� at the
stationary one (an �2 ��) dynamo). Such a dissymmetry
may explain generically the field dissymmetry observed
in the VKS configuration with one rotating disk, where the
field is much more intense near the rotating impeller, than
near the stationary impeller cf. Fig. 1.

If the � effect computed in the present case is not
strongly modified when the two impellers are rotating,
we may draw interesting implications about the VKS
dynamo in more general rotating regimes. Indeed, the
location of the azimuthal velocity shear layer strongly
depends on the relative velocity of the two impellers
� ¼ ðf1 � f2Þ=ðf1 þ f2Þ [17]: as long as j�j � �c, the
azimuthal velocity shear layer is in-between the two
impellers, and there is a constant shear at the two impellers,
of the order of �0 � �ðf1 � f2Þ=H. Once j�j � �c, the
shear layer is at the slowest impeller, like in the one
rotating disk case explored in the present Letter: the dif-
ferential rotation is almost zero at the fastest impeller, and
very strong at the slowest one [18]. This peculiar property
however offers possible very different generic dynamo
behavior under and above �c. For j�j< �c, the � effect

is of the order Oð1=HÞ, so that it is too weak to supersede
the � effect, of the order 1=hb (since hb=H � 1). In such
case, the dominant dynamo mechanism is �2 at each
impellers. For j�j> �c, the differential rotation switches
to Oð1=hbÞ at the slowest impeller, and the � effect
becomes comparable to the � effect. There is therefore
the possibility of an �2 �� mechanism at the slowest
impeller, with an �2 dynamo mechanism at the fastest
impeller. This natural switch, induced by the behavior
of the shear layer, opens interesting perspectives in terms
of possible dynamical regimes in the VKS experiments.
Indeed, an homogeneous �2 dynamo is generically steady,
with dynamo threshold Rmc ¼ Oðk=�Þ, while an homoge-
neous ��� dynamo is generically oscillatory with
dynamo threshold Rmc ¼ Oðk2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2=�kRp�
0Þ

p
Þ, with a

rotating frequency bifurcating from a finite value at the
dynamo onset !osc ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð�kRp�
0=2Þ

p
[19]. [Meridional circu-

lation and (or) parity properties with respect to the equator
of � can steady ��� dynamos.] In our setting, this
translates in Rmc ¼ OðR=hbÞ for �2 dynamos, and Rmc ¼
OðR=hbÞ= ffiffiffiffiffiffiffiffi

�c=�
p

and !osc ¼ OðR=hbÞ ffiffiffiffiffiffiffiffi

�c=�
p

for the ���
dynamo. Due to inhomogeneities and possible nonlinear
coupling in between the two dynamo mechanism at each
impeller [3], it is not guaranteed that these generic features
will persist. However, we observe that for � < �c, dynamos
observed in VKS are indeed steady, while both steady and
dynamical regimes with oscillations appear for � � �c [20],
with oscillation frequency bifurcating from finite value [2].
The scale separation in the VKS experiment, with � and�
effects occurring in region of size hb � R is in any case a
very interesting result, since it validates the main hypotheses
underlining the � effect and opens the way to homogeniza-
tion techniques [21]. It would also be interesting in the VKS
experiment to vary the blade’s height to see how it affects
both the threshold and the oscillation frequencies and check
their potential R=hb scaling.
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