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We know very little about primordial curvature perturbations on scales smaller than about a Mpc.

Measurements of the � distortion of the cosmic microwave background spectrum provide the unique

opportunity to probe these scales over the unexplored range from 50 to 104 Mpc�1. This is a very clean

probe, in that it relies only on well understood linear evolution. Also, just the information about the

low multipoles (l� 100) of � is necessary. We point out that correlations between � distortion and

temperature anisotropies can be used to test Gaussianity at these very small scales. In particular the �T

two-point correlation is proportional to the very squeezed limit of the primordial bispectrum and hence

measures flocNL, while �� is proportional to the primordial trispectrum and measures �NL. We present a

Fisher matrix forecast of the observational constraints on flocNL and stress that a cosmic variance limited

experiment could in principle reach �flocNL �Oð10�3Þ.
DOI: 10.1103/PhysRevLett.109.021302 PACS numbers: 98.80.Es, 98.70.Vc

The initial conditions of our Universe can be described
in the simplest case just by specifying at some early time
the probability distribution function of the adiabatic mode
on a wide range of scales. Since then most of these scales
have evolved in a complicated and often nonlinear way
until today. Therefore, it is very hard to find accurate
probes of these initial conditions, with two notable excep-
tions: large scale structures today, which still have not
entered a fully nonlinear regime, and the anisotropies of
the cosmic microwave background (CMB) radiation.
Because of complicated nonlinear dynamics on the one
side and Silk damping on the other, both probes are useful
only at scales of order a Mpc or larger. Hence, it is very
interesting to find ways to investigate and constrain scales
outside of the f10�4 � 1g Mpc�1 window, which we have
explored so far.

In [1] it was shown that [2] due to the dissipation of
acoustic waves, the spectral distortion of the CMB can be
used to constrain the (integrated) primordial power spec-
trum in the approximate range 50 & k Mpc & 104. This
mechanism provides us with the probably unique chance to
probe primordial perturbations that by now have been
completely erased by Silk damping and swamped by com-
plicated gravitational dynamics. Although we know that
the primordial perturbations in the cosmic microwave
background–large-scale structure (CMB-LSS) window
are close to Gaussian and, hence, well described by just
the power spectrum, we know near to nothing about the
statistical properties at much smaller scales.

In this Letter, we show that besides probing the inte-
grated power spectrum, the CMB spectral distortion is a
potentially powerful tool to constrain deviations from
Gaussianity at scales 50 & k Mpc & 104. Correlations be-
tween the � distortion and temperature anisotropies of the
CMB provide a direct measurement of the primordial

bispectrum (in the squeezed limit), while self-correlations
of � distortion measure the primordial trispectrum. It is
important to stress that this probe is particularly clean in
that it only relies on well understood CMB physics and
is largely unaffected by gravitational nonlinearities.
The rest of the Letter is organized as follows. We start by

reviewing the relevant aspects of CMB physics. Then,
following [1,3,4], we derive an analytic estimate for the
� distortion which we use to compute two-point self-
correlations and cross correlation with temperature anisot-
ropies. Finally, we present a Fisher matrix forecast together
with some consideration of observational prospects and
we conclude with a summary.
CMB distortion.—At early times (z � 106) the Universe

is well described by a hot photon-baryon plasma. The
number density of photons nð�Þ per frequency interval is
given to very high accuracy by the blackbody spectrum
nð�Þ ¼ ðex � 1Þ�1, where x � h�=ðkBTÞ. The equation
that describes the subsequent evolution of the photon num-
ber density is the full Boltzmann equation (when restricted
to Compton scattering this is known as the Kompaneet’s
equation [5]). This equation has three interesting regimes.
Before z ’ z�;i � 2� 106 any energy released into the

photon-baryon plasma is quickly thermalized by elastic
and double Compton scattering (e��þ ! e� þ 2�),
which are still very efficient [6]. The end result is again a
blackbody spectrum with now a higher T and a larger total
number of photons N. After z�;i double Compton scatter-

ing (as well as bremsstrahlung) becomes less efficient
and the total number of photons is approximately frozen.
For z�;f & z & z�;i, with z�;f � 5� 104, equilibrium is

still achieved after an energy injection due to elastic
Compton scattering, but since this process does not change
the number of photons the end result is a Bose-Einstein

distribution [7], i.e., nð�Þ ¼ ½exþ�ðxÞ � 1��1, where � is a
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frequency dependent chemical potential (rescaled by kBT
so that it is dimensionless). The Kompaneet’s equation
shows that �ðxÞ deviates from a constant only at very low

frequencies, i.e., �ðxÞ ¼ �0e
�xc=x, with xc ’ 5� 10�3.

Henceforth, we approximate � as constant, which is valid
everywhere except deep in the Rayleigh-Jeans tail (� ! 0).
Finally, for z & z�;f even Compton scattering is not effi-

cient enough to establish kinetic equilibrium between
matter and radiation. The distortion created after this
moment is known as y type and is relevant, e.g., for the
Sunyaev-Zel’dovich effect [8]. Of course, this is a simpli-
fied picture, since there is no sharp transition between one
regime and the next. For the purpose of analytical estimates
we will take the period responsible for the creation of �
distortion to be z�;f & z & z�;i with the numerical values

given above. As we will see, due to a logarithmic depen-
dence on the size of this interval, changing these values by
factors of order unity will not alter the main results. It
should be clear though that for precise predictions one
needs to study the system numerically.

We will be interested in the energy injection coming
from the dissipation of acoustic waves of the adiabatic
mode (Silk damping) as these reenter the horizon and start
oscillating. Other sources of distortion are present (e.g.,
adiabatic cooling [4]) and the physics of the system is very
rich. Our working assumption here is that either all other
sources lead to a smaller and therefore negligible distor-
tion, as it is the case if the primordial power spectrum is not
too red tilted, or that all other relevant effects are under-
stood with a high enough precision to be subtracted off
leaving the� distortion caused by Silk damping as the only
signal.

� Distortion.—In this section, following [1,3,4], we
derive a formula that relates the late time � distortion to
the primordial power spectrum. Using the Bose-Einstein
distribution plus the fact that the total number of photons is
constant, for an amount of energy (density) released into
the plasma �E one finds that � ’ 1:4�E=E. Hence, let us
estimate the energy injection due to damping of acoustic
waves. The energy density of a density wave is given by [9]
Q ¼ �h��ðxÞ2ipc2s=ð1þ c2sÞ, with cs the sound speed,

� the density and � the dimensionless amplitude of oscil-
lations averaged over a period (indicated by hip to differ-

entiate it from the quantum-ensemble average hi). Since at
this time the Universe is dominated by radiation, we take
� ¼ �� and c2s ’ 1=3. Then, one has

�E

E
’ �

Z z�;f

z�;i

d

dz

Q

��

’ 1

4
h��ðxÞ2ipjz�;i

z�;f
; (1)

We can use the transfer function (see, e.g., [11])

��ðkÞ ’ 3 cosðkrÞe�k2=k2D ; (2)

where, using that R � 3�B=4�� � 1, the diffusion damp-

ing scale is

kD �
�Z 1

z
dz

1þ z

6Hne�Tð1þ RÞ
�

R2

1þ R
þ 16

15

���1=2

’ ð1þ zÞ3=24:1� 10�6 Mpc�1; (3)

and

kr ¼
Z t

0

kdt

a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1þ RÞp ’ 2kt

a
ffiffiffi
3

p : (4)

We then have

h��ðxÞ2ip ¼ 1:45
Z d3k1d

3k2
ð2�Þ6 Rðk1ÞRðk2Þ

� h��ðk1Þ��ðk2Þipeið ~k1þ ~k2Þ� ~x; (5)

where R describes curvature perturbations. Finally, to
account for the fact that � arises from a thermalization
process, we use a top-hat filter in real space WðxÞ, which
smears the dissipated energy over a volume of radius
k�1
s * k�1

D;f.

Summarizing, the deformation parameter � is related to
primordial perturbations by

�ðxÞ ’ 4:6
Z d3k1d

3k2
ð2�Þ6 Rð ~k1ÞRð ~k2Þei ~kþ� ~xW

�
kþ
ks

�
hcosðk1rÞ

� cosðk2rÞip½e�ðk2
1
þk2

2
Þ=k2D�z�;i

z�;f
; (6)

where WðkÞ � 3k�3½sinðkÞ � k cosðkÞ� is the Fourier

transform of the top-hat filter WðxÞ and ~k	 � ~k1 	 ~k2.
The quantum-ensemble average of �ðxÞ gives the log-
integral of the primordial power spectrum from kDðz�;iÞ ’
1:1� 104 Mpc�1 to kDðz�;fÞ ’ 46 Mpc�1,

h�ðxÞi ’ 2:3
Z

d logk�2
RðkÞ½e�2k2=k2D�if; (7)

where

hR2i � ð2�Þ3�3ð ~KtotÞPRðkÞ; PRðkÞ � 2�2�2
RðkÞ

k3
: (8)

To visualize this, in Fig. 1 we plot �2
RðkÞe�2k2=k2D for

kDðz�;iÞ (dotted line) and kDðz�;fÞ (dashed line) as well

as their difference (red-filled region on the right), which
quantifies the amount of dissipated energy and hence �
distortion.
Two-point correlation functions.—Let us now compute

the two-point correlation between a direction dependent �
distortion �ðn̂Þ and temperature anisotropy �Tðn̂Þ. To
make contact with the way observations are analyzed,
we will decompose both signals in spherical harmonics,
which are an orthonormal basis of functions on the sphere.
We start with
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aTlm �
Z

dn̂
�Tðn̂Þ
T

Y

lmðn̂Þ

¼ 4�
3

5
ð�iÞl

Z d3k

ð2�Þ3 Rð ~kÞ�lðkÞY

lmðk̂Þ; (9)

where �lðkÞ is the radiation transfer function. Throughout
this Letter we will use the Sachs-Wolfe approximation
�lðkÞ ’ jlðkrLÞ=3 with rL ’ 14 Gpc the distance from
last scattering and jl a spherical Bessel function. This is
in principle valid only in the range 10 & l & 50, but for the
purpose of the Fisher forecast it will be a reasonable
estimate also for higher l’s. Let us define in general

hðailmÞ
ajl0m0 i ¼ �ll0�mm0Cij
l ; (10)

then the TT correlation gives the well-known result

CTT
l ¼ 2�

25

�RðkpÞ2
lðlþ 1Þ ’ 6:0� 10�10

lðlþ 1Þ ; (11)

where kp � 0:002 Mpc�1 is a common pivot scale at

which �2
RðkpÞ ¼ 2:4� 10�9 [12]. The � distortion can

also be expanded as

a�lm ¼ 4:6
Z

dn̂Y

lmðn̂Þ

d3k1d
3k2

ð2�Þ6 Rð ~k1ÞRð ~k2Þei ~kþ� ~xW
�
kþ
ks

�
� hcosðk1rÞ cosðk2rÞip½e�ðk2

1
þk2

2
Þ=k2D�if: (12)

Using the identities

ei
~k� ~x ¼ X

l

ð2lþ 1ÞilPlðk̂ � x̂ÞjlðkxÞ; (13)

Plðk̂ � x̂Þ ¼ 4�

2lþ 1

Xl
m¼�l

Ylmðk̂ÞY

lmðx̂Þ; (14)

one can conveniently rewrite (12) as

18:4�ð�iÞl
Z d3k1d

3k3
ð2�Þ6 Y


lmðk̂þÞRð ~k1ÞRð ~k2ÞW
�
kþ
ks

�
� jlðkþrLÞhcosðk1rÞ cosðk2rÞip½e�ðk2

1
þk2

2
Þ=k2D�if: (15)

The T� correlation is found to be

C
�T
l ¼ 6:1�

9

25
fNLb

�4
RðkpÞ

lðlþ 1Þ ln
�
kD;i

kD;f

�

’ 2:2� 10�16

lðlþ 1Þ fNLb; (16)

where we used the local bispectrum [13]

hR3i¼ ð2�Þ3�3ð ~KtotÞ
�
�6

5
fNL

�
½PRðk1ÞPRðk2Þþ2perm0s�

(17)

and defined

b

lðlþ 1Þ �
2

log

�
kD;i

kD;f

� Z
d logkþjlðkþrLÞ2

�
Z

d logk�
�2

Rðk�=2Þ
�2

RðkpÞ
�2

RðkþÞ
�2

RðkpÞ
�

�
e�ðk2þþk2�Þ=ð2k2DÞ

�
i

f
W

�
kþ
ks

�
: (18)

This formula can be simplified if one assumes a weak
scale dependence. Taking �2

RðkÞ ¼ �2
RðkpÞðk=kpÞns�1,

one finds

b ’

��
kD
2kp

�
ns�1

�
i

f

ðns � 1Þ log
�
kD;i

kD;i

� ’ 1þ ns � 1

2
log

�
kD;ikD;f

4k2p

�
;

so that b ’ 1þ 12ðns � 1Þ close to the scale invariant limit
ns ! 1.
The �� self-correlation has a Gaussian and a non-

Gaussian contribution. For the former one finds

C��
l;Gauss�3:5�10�17

�4
RðkD;fÞ
�4

RðkpÞ
ksr

�2
L

k3D;f

& 9�10�29; (19)

where in the last line we took �RðkD;fÞ ¼ �RðkpÞ and in

order to get an upper bound ks ¼ kD;f, which is the shortest

scale that contributes sizably to dissipation. This scaling
can be understood as follows. For a Gaussian field, con-
sider the power spectrum (i.e.,� distortion) at small scales
kD;f. Its fluctuations in regions much more distant than k�1

D;f

are completely independent. Hence, the expansion of
these power fluctuations in multiples is independent of l,
i.e., just white noise, for low multiples l=rL � kD;f. Now

let us consider the effect of smearing. Measuring the low
�-distortion multiples, we are effectively averaging over

CMB LSS

10 4 0.01 1 100 104

1.0

2.0

1.5

k Mpc

FIG. 1 (color online). The figure shows the power spectrumwith
Silk damping as function of logk. The dotted, dashed, and dot-
dashed lines are�2

Re
�2k2=k2D at z�;i ¼ 2� 106, z�;f ¼ 5� 104 and

zL ¼ 1100 respectively. The red area on the right indicated by �
is the difference of the power spectrum between z�;i and z�;f.
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many small-scale (again of order kD;f) independent real-

izations, and hence we are suppressing the individual

variance by N�1=2. The number of kD;f modes in a spheri-

cal shell around the last scattering surface of thickness ks
is given by N � k3D;f=ðksr�2

L Þ.
Using the local trispectrum

hR4i¼ ð2�Þ3�3ð ~KtotÞ�NL�½PRðk1ÞPRðk2ÞPRðj ~k1þ ~k3jÞ
þ11perm0s�

for the non-Gaussian contribution one finds

C
��
l;NG � 42�

�RðkpÞ6
lðlþ 1Þ �NLb

0ln2
�
kD;f

kD;i

�

’ 5:3� 10�23�NL
b0

lðlþ 1Þ ; (20)

where b0 is defined by

b0

lðlþ 1Þ ¼
2

ln2
�
kD;f

kD;i

� Z
d lnkþd lnk�d lnk3

� �Rðk�=2Þ2�RðkþÞ2�Rðk3Þ2
�RðkpÞ6

� ½e�k2�=ð2k2DÞ�if½e�2k2
3
=k2D�if; (21)

such that b0 ’ 1 for a scale invariant power spectrum.
Notice that, for a given amount of primordial non-
Gaussianity, the ratio of the non-Gaussian to Gaussian
contributions to the two-point self correlation is much
larger for � than it is for T. In other words, C��

l is more

sensitive in relative terms to non-Gaussianity than CTT
l .

To discuss the practical observability of the above
signals we need to consider experimental noise. For T
this is negligible since we will only consider low multiples
(l & Oð100Þ). To model the noise for � we assume a
Gaussian beam and use [14]

C��;N
l ’ w�1

� el
2=l2max ; (22)

where w� is the sensitivity to � and lmax is related to the

beam size of the experiment. For example, for an experi-
ment like PIXIE [15] the beam size is 	FWHM ¼ 1�:6
which leads to lmax ’ 84 and the sensitivity is w�1=2

� ’ffiffiffiffiffiffiffi
4�

p � 10�8. So, a figure of merit to keep in mind is

C��;N
l ’ 1:3� 10�15el

2=l2max : (23)

Fisher matrix analysis.—We are now going to use the
above results to perform a Fisher forecast for the bounds
that � distortion can put on fNL local. The fact that we
invoked the Sachs-Wolfe approximation instead of using
numerical transfer functions should not alter much the
estimate of the signal to noise ratio because the acoustic
peaks in T mostly scale away. The 1� 1 Fisher matrix,

F � � @2

@f2NL
lnL ¼ @2

@f2NL


2

2
¼ X

l

C
�T
l C

�T
l

�2
l

;

gives us the signal-to-noise ratio via S=N ¼ fNL
ffiffiffiffi
F

p
. For

mild non-Gaussianity, fNL & 105, we can estimate the
noise in the measurement of each l as

�2
l ¼ hðC�T

l Þ2i � hC�T
l i2 ’ 1

2lþ 1
CTT
l C��;N

l ; (24)

where we used that � and T instrumental noises are

uncorrelated, CTT
l � CTT;N

l and C��
l � C��;N

l as seen

by comparing (19) with (23). Then, the signal-to-noise
ratio can be written as

S

N
’ 12

5
fNL�R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log

�
lmax

2

�s �
S

N

�
�
; (25)

where ðS=NÞ� is the signal-to-noise ratio for the �

distortion averaged over the whole sky. Apart from the
numerical coefficient, this relation is to be expected. The
long-scale fluctuations of � around its average that corre-
late with temperature fluctuations are generated by the non-
Gaussian part of R and hence are suppressed with respect
to the � monopole by fNLR. Notice that reducing the
beam size of the experiment improves the signal-to-noise
ratio only logarithmically. Plugging in numbers one finds
the figure of merit

S

N
’ 0:7� 10�3bfNL

� ffiffiffiffiffiffiffi
4�

p � 10�8

w�1=2
�

�
; (26)

where �� ¼ 10�8 is the estimated one sigma error on the
�-distortion monopole of an experiment like PIXIE and b,
defined in (18), is of order one if the primordial power
spectrum is approximately scale invariant.
There are at least two classes of models in which the�T

correlation could provide the strongest constraints on non-
Gaussianity already with PIXIE’s sensitivity. First, models
in which the power spectrum grows at small scales [16],
since then b � 1. In most of these models b can be as large
as Oð102Þ leading to �flocNL �Oð10Þ for PIXIE. Second,
models in which the bispectrum diverges faster than the
local template in the squeezed limit, i.e. hR3i / k��

3 for

k3 ! 0 with �> 3 (see, e.g., [17] for a phenomenological
model).
Before concluding, let us remark that while instrumental

noise can be improved, there is a lower bound for the noise
imposed by nature, often referred to as cosmic variance. In
this respect the �T cross correlations possess an important
advantage as compared with the temperature bispectrum,
which is another probe of the primordial local bispectrum.
Cosmic variance, and more generally sampling variance,

scales with the number of modes N as N�1=2. For a
primordial bispectrum of the local type it is useful to
distinguish between long and short modes. The latter are
the same for both observables, provided one measures the
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low multiples of � (l� 100). On the other hand, the
number of short modes in the temperature bispectrum is
about l2max and due to Silk damping lmax can never be larger
than a few thousand. In �T cross correlations the number
of short modes is much larger and, as we said, can be
estimated as k3D;f=ðksr�2

L Þ * 1012. This means that, for

comic variance limited experiments, the bispectrum’s sen-
sitivity is �fNL �Oð5Þ, while using �T correlation one
can in principle reach �fNL �Oð10�3Þ.

Conclusions.—Measurements of the � distortion of the
CMB spectrum offer the unique opportunity to probe pri-
mordial perturbations in the otherwise inaccessible range
50 & k Mpc & 104. We have shown that the two-point self
correlations of �-distortion anisotropies and cross corre-
lations with temperature anisotropies provide a direct mea-
surement of the primordial tri- and bispectrum in the
squeezed limit, respectively. We have performed a Fisher
matrix forecast for the bounds on fNL local and found that a
bound of j�fNLj & 103 is achievable already with current
technology [15]. It is worth stressing again that in the case
of mild non-Gaussianity the monopole � distortion is
expected to be larger than the anisotropic part [see (25)
for a quantitative statement].

It would be interesting to further study the performances
of a dedicated experiment. We should stress that one
should be careful in comparing this bound with those
from CMB-LSS, since it applies to very small scales,
around a kpc, which are completely unconstrained so far.

We have also noticed that the �T cross correlation is
contaminated by a much smaller cosmic variance than the
temperature bispectrum and for an ideal experiment it
could probe an fNL much smaller than unity. In this respect
it is important to stress that for all practical purposes
single-field inflation predicts a primordial bispectrum that
vanishes in the squeezed limit. The well known consis-
tency relation [18] fNL ¼ ns � 1 is derived using comov-
ing momenta. When comparing with observations one
should use physical momenta instead. Doing this leads to
an additional term that exactly cancels the ns � 1. As long
as one considers other sources of primordial local non-
Gaussianity so that fNL � ns � 1, this slow-roll correc-
tion can be safely neglected as we have done in the present
derivation.
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