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The widely used density matrix renormalization group (DRMG) method often fails to converge in

systems with multiple length scales, such as lattice discretizations of continuum models and dilute or

weakly doped lattice models. The local optimization employed by DMRG to optimize the wave function

is ineffective in updating large-scale features. Here we present a multigrid algorithm that solves these

convergence problems by optimizing the wave function at different spatial resolutions. We demonstrate its

effectiveness by simulating bosons in continuous space and study nonadiabaticity when ramping up the

amplitude of an optical lattice. The algorithm can be generalized to tensor network methods and combined

with the contractor renormalization group method to study dilute and weakly doped lattice models.
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The optimization of variational wave functions is gen-
erally a very difficult problem. In the specific case of
matrix-product states (MPS) [1], the density matrix renor-
malization group algorithm (DMRG) [2–5] often reliably
and efficiently optimizes these wave functions to find a
good approximation of the ground state. While most effi-
cient in one dimension, it can be applied to medium-sized
two-dimensional systems [6] and has been generalized to
calculate time-dependent [7–9] and finite temperature
properties [10–12].

In systems with multiple length scales, however, the
DMRG algorithm often fails to converge, as the local
optimizations that are at the core of DMRG are ineffective
in optimizing large-scale features of the wave function.
Especially in dilute systems where the interparticle dis-
tance is large compared to the lattice spacing, the conver-
gence of the density profile can be very slow. Systems with
multiple length scales suffering from this problem arise
from lattice discretizations of continuum models [13] or in
weakly doped lattice models where the hole density ex-
hibits the same convergence problems. The first situation
was recently discussed in Ref. [16].

Similar convergence problems are also known in other
fields, e.g., when solving partial differential equations [17],
lattice field theories [18], or electronic structures [19], and
have there been overcome by multigrid approaches.
Multigrid methods use a hierarchy of discretizations, as
sketched in Fig. 1. Starting from the target problem on the
finest grid (or a lattice model), the system is mapped to
hierarchy of coarser grids. An approximate solution of the
smallest problem on the coarsest grid is then used to initi-
alize optimizations of the problem on the next finer grid,
and this process is iterated down to the finest grid. This
method can substantially speed up a calculation since the
large scale features converge quickly on the coarsest grid,
and the following calculations on finer grids only need to

optimize local features at the scale of the respective grid
spacing.
In this Letter, we develop a multigrid DMRG (MG

DMRG) algorithm to solve the above-mentioned conver-
gence problems in DMRG calculations. As a first appli-
cation and demonstration of the effectiveness of the
algorithm, we present results for bosons in continuous
space where MG DMRG enables the study of nonadiaba-
ticities when slowly ramping up the amplitude of an optical
lattice.
We start the description of the MG DMRG algorithm by

reviewing MPS wave functions on a chain of L sites

jc i ¼ X
�

A�1

1 A�2

2 � � �A�L
L j�i (1)

used in DMRG. They are characterized by a polynomial
number / LM2 of variational parameters, the M�M
matrices A�i

i . In one dimension, a good approximation

FIG. 1 (color online). Multigrid DMRG illustrated for bosons
in an optical lattice VðxÞ. The DMRG algorithm converges fast
for the rather dense system at the coarsest grid (shown on the
top), and this solution is then used to iteratively initialize DMRG
calculations on finer grids, which substantially speeds up con-
vergence. The filling of the circles illustrates the probability for a
particle to be at that site.
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for low-energy states can be obtained by MPS wave func-
tions with a fixed or, at most, polynomially growing M
[20,21].

While optimizing MPS wave functions to obtain a varia-
tional estimate for the ground state is a hard nonlinear
problem, the DMRG algorithm is very effective in many
cases. It iteratively optimizes one or two of the matrices
A�i

i while keeping all other matrices fixed and sweeps back
and forth along a (quasi-) one-dimensional system until
convergence is achieved. For a recent review and imple-
mentation see Ref. [5]. It can, however, get trapped in local
minima of this nonlinear optimization problem or become
very slow, especially for the dilute systems considered
here. As an example, see the badly converged density
profiles obtained by standard DMRG approaches in Fig. 2.

In our implementation of the MG DMRG algorithm, we
start by constructing the target lattice model and a hier-
archy of models on coarser grids. Starting from the coarsest
level we optimize the wave function and interpolate it to
the next finer level, repeating this procedure until we reach
the target system. Many generalizations are possible, for
example, iterating the procedure by going back to coarser
levels or starting from the finest instead of coarsest level.

The restriction operation maps a system to a coarser
grid, merging n (typically n ¼ 2) sites into one. The
model, given by the Hamiltonian H and defined in the
local basis f�g, is mapped to a restricted model ~H in a
truncated local basis f~�g for the n merged sites. The
truncation, denoted by an isometry T ~�

�1;...;�n
, is straightfor-

ward for continuum models, and an approach for lattice
models will be discussed below. Any error due to the
truncation will be corrected when returning to finer scales,
as long as we stay in the same phase. As illustrated in
Fig. 3 the restriction transforms a matrix product state
A1; . . . ; An into

~A ~�
�1�2

¼ A�1

�1�1
A�2

�1�2
� � �A�n

�n�1�2
T ~�
�1;...;�n

: (2)

Prolongation is the inverse of restriction and maps a solu-
tion from a coarse grid to a finer one. The isometry is
inverted, and T�1 replaces one index by k new indices.
From this tensor, we can recover a (nonunique) MPS
representation by repeatedly applying singular value
decompositions and splitting it into matrices A1; . . . ; An

(see Fig. 4). It has turned out to be useful to perform a
standard DMRG update on the newly obtained matrices
immediately after prolongation while keeping the rest of
the system on the coarse-grained lattice [22].
As a first application, we apply MG DMRG to bosons in

a one-dimensional continuum system with an external
optical lattice potential, VðxÞ¼V0cos

2ðkxÞ, with k¼�=a
and a the size of a unit cell. The continuous-space
Hamiltonian describing spinless bosons interacting through
a � potential in a system of L unit cells and length La is

Ĥ ¼
Z La

0
dxĉ yðxÞ

�
� @

2

2m

d2

dx2
þ VðxÞ

�
ĉ ðxÞ

þ g

2

Z La

0
dxĉ yðxÞĉ yðxÞĉ ðxÞĉ ðxÞ; (3)

where a boson is created at position xwith the field operator

ĉ yðxÞ, satisfying the usual commutation relations. We ex-

press energies in units of the recoil energy Er ¼ @
2k2

2m . The

interaction g is conveniently parametrized by the dimen-
sionless coupling � ¼ mg=@2n, where n is the density.
In deep optical lattices, the low-energy sector of the

model can be mapped to an effective single band

FIG. 2 (color online). Density profiles of a continuum system
of bosons in an optical lattice consisting of L ¼ 32 unit cells.
The top and middle panels shows the nonconverged results
obtained for N ¼ 32 grid points per unit cell after 12 sweeps
of the DMRG algorithm with two different initial states: initial
state 1 is a random state, initial state 2 is obtained from an
infinite-size growing procedure as implemented in the ALPS
DMRG code [24]. The bottom panel shows the multigrid result.

FIG. 3 (color online). The restriction of an MPS state reducing
it from eight to four sites. The contraction along the indices �,
�1, and �2 creates a new tensor ~A~�

�1�2
with a new index ~� but

keeping the old connections to the neighboring sites (�1 and �2).

FIG. 4 (color online). Prolongation operation doubling the
number of sites: First, we transform the basis ~� of the initial
matrix ~A into two new local bases �1 and �2. With a singular
value decomposition, we then split the rank-4 tensor ~A0 into two
matrices A1 and A2.
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Hubbard model with one site per unit cell. We are, how-
ever, interested also in weak optical lattices and thus,
discretize the continuum model on a grid with N points
per unit cell and spacing �x ¼ a=N. To discretize the
Hamiltonian Eq. (3) on this lattice, we replace the
Laplacian by a second order finite difference approxima-
tion and replace field operators by lattice annihilation and

creation operators ĉ yðx ¼ ðiþ 1=2Þ�xÞ ¼ 1ffiffiffiffiffi
�x

p ĉyi . We

end up with a Hubbard-like model in a spatially varying
potential,

Ĥð�xÞ ¼ �tð�xÞX
i

½ĉyi ĉiþ1 þ H:c:� þX
i

�ið�xÞn̂i

þUð�xÞ
2

X
i

n̂iðn̂i � 1Þ; (4)

with tð�xÞ¼ ð@2=2mÞ=�x2,Uð�xÞ¼g=�x, and�ið�xÞ ¼
Vððiþ 1=2Þ�xÞþ 2ð@2=2mÞ=�x2. A similar lattice model
can be formulated for fermions.

With this definition of the Hamiltonian for arbitrary �x,
the implementation of MG DRMG is straightforward. The
matrix elements of the isometry T are

T ~�
�1;...;�n

¼ �ð~�;�1 þ . . .þ �nÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
�0
1
;...

�ð~�;�0
1 þ . . .þ �0

nÞ
r ; (5)

where �i, �
0
i and ~� are particle-number eigenstates and we

truncate the maximum occupation of a site at Nmax, i.e., �i,
~� 2 f0; . . . ; Nmaxg. Because of particle-number conserva-
tion, T is a Nmax � Nn

max block-diagonal matrix. Note that
we start from a coarse-grained lattice and perform only
prolongations.

As a benchmark for the multigrid algorithm, we consider
an optical lattice with V0=Er ¼ 6 and 1=� ¼ 0:1 corre-
sponding to the insulating phase [23] at unit filling.
Our MG DMRG simulations were performed with up to
N ¼ 128 lattice sites per unit cell (�x ¼ 0:007 812 5) with
Nmax ¼ 2, keepingM ¼ 200 states and using 12 sweeps of
single-site updates at each level. We also perform standard
DMRG simulations starting from either a random initial
state, a state obtained from an infinite-size growing proce-
dure, or a few steps of imaginary time evolution (not
shown). The infinite-size growing procedure is commonly
used to obtain good initial states for one-dimensional
systems and has been proven to be very efficient in most
cases. We use the implementation of the ALPS DMRG
code [24], which performs the growing procedure on a
state with very small bond dimension and increases the
bond dimension linearly with the number of sweeps
thereafter.

Figure 2 shows the density profile obtained with the
three approaches. Clearly, the standard DMRG approaches
are trapped in configurations with a globally nonhomoge-
neous density distribution, and further sweeps are not
effective in redistributing the particles. The multigrid

method, on the other hand, achieves a symmetric distribu-
tion, since it performs the optimization of the large-scale
features on the initial coarse mesh with justN ¼ 2 sites per
unit cell, where convergence is very fast. Subsequent cal-
culations on finer lattices are initialized with the prolon-
gated solution of the coarser lattice. This is already close to
the ground state, and only the local fine-scale features of
the wave function need to be optimized.
The better convergence of the MG DMRG is also re-

flected in the energies shown in Fig. 5. While, for modest
discretizations, standard approaches yield energies compa-
rable to MG DMRG, they encounter severe convergence
problems for smaller values of �x where the difference
between multiple scales of the dilute system become more
and more important. The most reliable method is MG
DMRG combined with optimization in the prolongation.
MG DMRG opens new interesting applications for

DMRG that have not been accessible before. As an ex-
ample, we combine MG DMRG with time evolution [7–9]
to study heating caused by nonadiabaticity when ramping
up the amplitude of an optical lattice. We start from the
ground state of a homogeneous system of length L ¼ 16
and N ¼ 16 grid points per unit cell calculated by MG
DMRG. We evolve it in time using a fourth-order Trotter
decomposition with�t ¼ 0:01@=Er. Nonadiabaticities due
to ramping at a finite speed cause heating, and we plot the
energy difference to the ground state in Fig. 6 for three
different ramp profiles and several total ramping times. For
the calculation of the ground-state energies in weak optical
lattices, MG DMRG was used. We observe that as the
ramp speed decreases, differences in ramp shape are less
important than the total ramping time, indicating that the

FIG. 5 (color online). Comparison of the energies in a bosonic
optical lattice (V0=Er ¼ 6, 1=� ¼ 0:1) with L ¼ 32 unit cells
discretized with increasing discretization N ¼ 16, 32, 64, 128
obtained with different strategies: DMRG with initial state 1
optimizing an initial random state, DMRG with initial state 2
initializing the system with an infinite size procedure and line-
arly increasing the number of states (results obtained with the
ALPS DMRG code [24]), MG DMRG, and MG DMRG com-
bined with local optimization in the prolongations.
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exact shape of the ramp profiles play a minor role in
experiments, and experimentalists should focus on deter-
mining optimal ramping times.

In DMRG simulations of weakly doped t-J or Hubbard
ladder models [25–27], the hole density shows similar
convergence problems as seen above for dilute particle
systems. In particular, it has been observed that for six
holes in more than 2� 64 sites the standard DMRG algo-
rithm fails to distribute the three bound hole pairs evenly
over the ladder [28], and MG DMRG can be of use here.
The restriction step of mapping the model to a coarser
lattice is, however, not as straightforward as in continuum
models. We propose to use the contractor renormalization
(CORE) method [29] to find a good approximation of the
model in the reduced Hilbert space of the coarser models,
and to iterate this procedure in further restriction steps. For
the specific case of doped ladder models, the first step maps
two-site rungs or four-site plaquettes to a hardcore boson
model for the hole pairs or an extended plaquette model
containing hole pairs, magnons, and holes [30]. Further
restriction steps map to simpler bosonic models for the
hole pairs, as illustrated in Fig. 7. After prolongation back
to the full lattice model, the ground-state wave function can
be further improved by repeating the multigrid scheme.
Now one can use knowledge of the approximate ground
state to perform the restrictions of the basis instead of using
CORE. Details of this method and results of this approach
will be published elsewhere.

We point out that MG DMRG is a fundamentally differ-
ent approach from the one taken by tree-tensor networks
[31] or the multiscale entanglement renormalization ansatz
(MERA) [32,33]. In those approaches, a new class of wave

functions is proposed that describes the system at several
levels of coarse graining, and all levels are optimized
simultaneously, which can still suffer from convergence
problems at fine scales. Instead, our approach relies on
standard matrix-product states which can be optimized and
evaluated much more easily and much faster but uses a
hierarchical coarse graining to achieve a faster and more
reliable optimization than standard DMRG.
Our algorithm can be easily combined with other opti-

mization schemes for DMRG, such as using time evolving
block decimation [8,34] to directly simulate the thermody-
namic limit. One can also easily generalize the restriction
Eq. (2) and prolongation to tensors of higher rank in order
to apply the multigrid scheme to other tensor network
states, e.g., multiscale entanglement renormalization
[32,33], projected entangled pair states (PEPS) [35], and
infinite PEPS [36].
This project was supported by a grant of ETH Zurich.
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