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We explicitly exhibit a set of four ququad-ququad orthogonal maximally entangled states that cannot be

perfectly distinguished by means of local operations and classical communication. Before our work, it was

unknown whether there is a set of d locally indistinguishable d � d orthogonal maximally entangled states

for some positive integer d. We further show that a 2 � 2 maximally entangled state can be used to locally

distinguish this set of states without being consumed, thus demonstrate a novel phenomenon of

entanglement discrimination catalysis. Based on this set of states, we construct a new set K consisting

of four locally indistinguishable states such that K�m (with 4m members) is locally distinguishable for

some m greater than one. As an immediate application, we construct a noisy quantum channel with one

sender and two receivers whose local zero-error classical capacity can achieve the full dimension of the

input space but only with a multi-shot protocol.
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Introduction.—One of the main goals of quantum infor-
mation theory is to understand the power and the limitation
of quantum operations that can be implemented by local
operations and classical communication (LOCC). These
operations are natural requirements when two or more
physically distant parties are trying to accomplish an in-
formation processing task. The class of LOCC operations
has been playing a crucial role in a number of active
researches in exploring the intrinsic properties of quantum
information, especially in understanding the weird nature
of quantum entanglement and quantum nonlocality.

One fundamental topic among these lines of research that
has recently attracted lots of attention is the local distin-
guishability of quantum states. In the well studied bipartite
case, a state secretly chosen from a set of pre-specified
orthogonal quantum states is shared between two distant
parties, say Alice and Bob. Their goal is to locally figure out
the exact identity of this state [1–16]. In some special cases
Alice and Bob are able to accomplish the discrimination
without error and in many other cases they are not. For
example,Walgate et al. proved that any two orthogonal pure
states, no matter entangled or not, are locally perfectly
distinguishable [1]. Other interesting examples include
sets of orthogonal pure states that are locally indistinguish-
able [2,3]. Later, Horodecki et al. showed a phenomenon of
‘‘more nonlocality with less entanglement’’[4]. These ex-
amples demonstrate that entanglement is not an essential
feature of locally indistinguishable states. It is thus of great
interest to study the role of entanglement in the local dis-
tinguishability problem. Considerable efforts have been
devoted to the local discrimination of maximally entangled
states. Ghosh et al. proved that any three Bell states cannot
be discriminated with certainty by LOCC [5]. In general,

Alice and Bob are not able to locally distinguish dþ 1 or
more d � d maximally entangled states with certainty
[5–9]. It would be quite interesting to know whether dþ1
is always a tight lower bound for the number of locally
indistinguishable maximally entangled states. In other
words, whether there is any locally indistinguishable set
consisting of d maximally entangled states in d � d state
space? This question was attacked in Refs. [6–11], and the
only known result is that in the case of d ¼ 3, any three
orthogonal maximally entangled states are locally distin-
guishable [6]. It has been conjectured in Ref. [11] that for
d > 3 such set of states should exist by proposing four 4 � 4
maximally entangled states that are locally indistinguish-
able by one-way LOCC. However, the possibility of distin-
guishability of these states by the most general LOCC
operations has not been excluded.
In this Letter, we resolve the above question by explic-

itly exhibiting four orthogonal ququad-ququad maximally
entangled states that are not locally distinguishable. Our
construction is remarkably simple, by accompanying each
state from the standard Bell basis (i.e., 2 � 2 maximally
entangled states) with different Bell states. More precisely,
our example is of the form fj�0i � j�0i; j�1i � j�1i;
j�2i � j�1i; j�3i � j�1ig, where fj�iig3i¼0 is the standard

Bell basis. Based on the construction, we show how en-
tanglement can be used, without being consumed, to ac-
complish state discrimination that cannot be achieved with
certainty without it. In other words, with a 2 � 2maximally
entangled state as resource, one can distinguish among the
above four orthogonal ququad-ququad maximally en-
tangled states, and after the discrimination, we are still
left with another two-qubit maximally entangled
state. This novel phenomenon is called entanglement
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discrimination catalysis. It is worth noting that this phe-
nomenon is different from the previously discovered ca-
talysis by entanglement in the context of entanglement
transformation [17] and nonlocal quantum operations
[18]. Based on this phenomenon, we find a set K of four
locally indistinguishable states such that K�m consisting of
an exponentially large number of states 4m, is locally
distinguishable. This indicates that local distinguishability
of a set of states could be increased under tensor operation,
a subtle fact previously overlooked. As an interesting
application, we construct a noisy quantum channel with
one classical sender and two quantum receivers whose
local zero-error classical capacity can achieve the full
dimension of the input space but only by using the channel
multiple times. Intuitively, a noisy quantum channel could
be boosted into a noiseless channel for sending classical
information in the multishot scenario. The existence of
such channel reveals a sharp difference between quantum
channels with one receiver and those with two receivers.
For quantum channel with one sender and one receiver, it
was shown that entangled inputs cannot make imperfect
quantum channels perfect [19], that is, for any such quan-
tum channel, multishot can never render noisy quantum
channels having maximum capacity, even asymptotically;
if the sender is classical, Shor proved that the classical
capacity of such channel is additive [20].

The major difficulty in proving the local indistinguish-
ability of the set of constructed states is that the structure of
LOCC operations is mathematically complicated. We con-
quer this obstacle by showing that even a wider class of
quantum operations that completely preserve the positivity
of partial transpose (PPT) cannot distinguish these states.
Since the set of LOCC operations is just a subset of that of
PPToperations, local indistinguishability of these states by
PPT operations immediately implies that of LOCC opera-
tions. Comparing to LOCC and separable operations, PPT
operations have a simpler mathematical structure that can
be feasibly characterized by semidefinite programming.
One motivation of studying the state discrimination by
PPT operations is its significant role in entanglement the-
ory. In fact, PPT operations have been used to study the
separability, entanglement distillation, and entanglement
transformation [21–26]. It was proved that PPT criterion is
a necessary condition for the separability of quantum states
[21,22]. Horodecki et al. showed that if a mixed state is
distillable, it must violate the PPT criterion [23]. Ishizaka
showed that bipartite pure entangled states can be trans-
formed into another bipartite pure state with arbitrary high
Schmidt rank by stochastic PPT operations [25].

Before we present our main results, let us first review
some notations and preliminaries. We shall use ’ to rep-
resent the density operator form j’ih’j for a pure state j’i.
We also use j�ii to denote the standard Bell states with
j�ii ¼ ðI2 � �iÞ 1ffiffi

2
p ðj00i þ j11iÞ, where �is are the Pauli

matrices given by �0 ¼ I2 and

�1 ¼ 1 0
0 �1

� �
; �2 ¼ 0 1

1 0

� �
; �3 ¼ 0 �i

i 0

� �
:

A positive operator-valued measure (POVM) with n
outcomes is an n-tuple of operators (M0;M1; � � � ;Mn�1)
such that Mi � 0 and

P
n�1
i¼0 Mi ¼ I. A set of quantum

states fj’iign�1
i¼0 can be distinguished by POVM ðMiÞn�1

i¼0

iff Mij’ii ¼ j’ii. A general PPT discrimination is
achieved by performing a PPT POVM where each element
has positive partial transpose. More precisely, a POVM
ðMiÞn�1

i¼0 acting on a bipartite system A �B is said to be

PPT if M�A
i � 0 holds for 0 � i � n� 1, where �A

means the partial transpose with respect to system A,
i.e., ðjijihkljÞ�A ¼ jkjihilj. For simplicity, � is used for
�A whenever it is clear from the context. It is known that
the set of LOCC POVMs is a subset of the set of PPT
POVMs. In other words, any POVM that can be realized by
means of an LOCC protocol is also a PPT POVM.
Let C, D, and F be three POVMs with n outcomes.

Then C ¼ WDWy for some matrix W means that Ci ¼
WDiW

y holds for any 0 � i � n� 1.F ¼�Cþð1��ÞD
denotes a convex combination of C and D, i.e., Fi ¼
�Ci þ ð1� �ÞDi holds for any 0 � i � n� 1.
It is straightforward to verify the following useful prop-

erties concerning with the Bell diagonal bipartite
operators.
Proposition 1.—Let M be a linear operator over 2 � 2

state space. Then (1).
P

3
i¼0ð�i � �iÞMð�i � �iÞ is diago-

nal under Bell basis; (2) If M ¼ P
�i�i is diagonal in

Bell basis, the partial transpose M� ¼ P
�i�i with

�i ¼ TrM=2� �4�i. Thus M, M� � 0 if and only if
0 � 2�i � TrM for 0 � i � 3.
Main result.—Let A and B both be d-dimensional

Hilbert spaces held by Alice and Bob, respectively. Then
we can derive an upper bound on the number of PPT
distinguishable orthogonal maximally entangled states.
Theorem 1.—No k > d maximally entangled states

in A �B can be perfectly distinguished by PPT
operations.
Proof.—We first show that if E, E� � 0 and Ej�i¼ j�i,

then trE � d, where j�i ¼ Pd�1
j¼0 jjiAjjiB=

ffiffiffi
d

p
is the stan-

dard maximally entangled state in spaceA �B. Noticing
that �� � I=d, we have

1¼Trð�Þ¼TrðE�Þ¼TrðE���Þ�TrðE�I=dÞ¼TrðEÞ=d:
Now assume that a set of maximally entangled states
fj�iigk�1

i¼0 can be distinguished by PPT POVM ðEiÞk�1
i¼0 .

Then trEi � d. The result of the theorem immediately
follows from

d2 ¼ TrI ¼ Tr

�Xk�1

i¼0

Ei

�
¼ Xk�1

i¼0

TrEi � kd ) k � d:

j
The result in Theorem 1 is slightly stronger than the

previous results where only separable operations were
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employed [6]. However, the key fact we have derived in the
proof has been implicitly obtained in Refs. [7,27]. The
proof presented above seems new.

We shall now provide four ququad-ququad orthogonal
PPT indistinguishable maximally entangled states which
resolves the open problem mentioned in the introduction
part. More precisely, we show that S ¼ fj�iiAB: 0 � i �
3g � A �B cannot be distinguished by any PPT POVM
withA ¼ A0 �A1 andB ¼ B0 �B1, whereA0,A1,
B0, and B1 are all two-dimensional Hilbert spaces and

j�0iAB ¼ j�0iA0B0
� j�0iA1B1

;

j�1iAB ¼ j�1iA0B0
� j�1iA1B1

;

j�2iAB ¼ j�2iA0B0
� j�1iA1B1

;

j�3iAB ¼ j�3iA0B0
� j�1iA1B1

:

Theorem 2.—S cannot be distinguished perfectly by any
PPT POVM.

Proof.—Let MS denote the set of PPT POVMs that can
distinguish S, i.e.,

MS ¼
�
ðMiÞ3i¼0: Mij�ii ¼ j�ii;

X3
i¼0

Mi ¼ I;Mi;M
�
i � 0

�
:

We shall show that MS is nonempty will lead to a
contradiction.

The complete proof is rather complicated and lengthy.
For ease of presentation, we shall outline the key proof
ideas as follows, and leave some technical details in the
Supplemental Material [28]. By the nonempty assumption,
we can choose C ¼ ðCiÞ3i¼0 from MS. One can then con-

struct a new POVMN ¼ ðNiÞ3i¼0 2 MS with highly sym-

metrical properties by exploring the convexity and
symmetries of S. The form of N enables us to derive a
contradiction by calculating its partial transpose directly to
show that N can not distinguish S, i.e., N =2 MS. Thus,
one can conclude that MS has to be empty.

Now we start to describe how to construct the desired
POVMN . We need explore some properties ofMS and S.

First, MS is convex, i.e., for any 0 � � � 1,

C ; D 2 MS ) �Cþ ð1� �ÞD 2 MS:

Second, S enjoys a number of symmetries:
S1. For any Pauli matrix � and any j ¼ 0, 1, �Aj

� �Bj

preserves j�ii in the following way,

ð�Aj
� �Bj

Þj�ii ¼ �j�ii:
S2. WA0B0

preserves j�0i and rotates j�ii to j�iþ1 mod 3i
for i ¼ 1, 2, 3,

WA0B0
j�0i ¼ j�0i; WA0B0

j�1i ¼ j�2i;
WA0B0

j�2i ¼ j�3i; WA0B0
j�3i ¼ j�1i;

where

W ¼ 1

2

�i 1
�i �1

� �
� i 1

i �1

� �
:

S3. UA0B0
preserves j�0i and j�1i, and swaps between j�2i

and j�3i,
UA0B0

j�0i ¼ j�0i; UA0B0
j�1i ¼ j�1i;

UA0B0
j�2i ¼ j�3i; UA0B0

j�3i ¼ �j�2i:
where

U ¼ 1 0

0 �i

 !
� 1 0

0 i

 !
:

S4. For � 2 ½0; 2�Þ, Vð�ÞA1B1
preserves j�ii for 0 � i � 3,

Vð�ÞA1B1
j�ii ¼ j�ii;

where

Vð�Þ ¼ 1 0

0 e�i�

 !
� 1 0

0 ei�

 !
:

Noticing that local unitary does not change the positivity
of partial transpose, we can construct a POVM N ¼
ðNiÞ3i¼0 2 MS by the convexity of MS and S1–S4
(j ¼ 0, 1) such that

N1 ¼ UA0B0
N1U

y
A0B0

; Niþ1 ¼ WA0B0
NiW

y
A0B0

(1)

for i ¼ 1, 2, and

N¼Vð�ÞA1B1
N Vð�ÞyA1B1

¼ð�Aj
��Bj

ÞN ð�Aj
��Bj

Þ: (2)

In particular, the second equality of Eq. (2) indicates that
the members of N are all diagonal in Bell basis, and
Eq. (1) has further greatly restricted the form of N .
We shall obtain the required N from any POVM C 2

MS by the following four relatively simpler steps:
Step 1: Notice that for Pauli matrix �,

ð�A0
� �B0

ÞCð�A0
� �B0

Þ 2 MS:

Invoking S1, the convexity of MS, and Proposition 1, we
know that

D ¼
�X

�

ð�A0
� �B0

ÞCð�A0
� �B0

Þ
�
=4 2 MS;

and each measurement operator Di is of the form
P

j�j �
DðijÞ for 0 � i � 3.
Step 2: According to S2, one can verify that

F ¼ WA0B0
ðD0; D3; D1; D2ÞWy

A0B0
2 MS;

G ¼ Wy
A0B0

ðD0; D2; D3; D1ÞWA0B0
2 MS

Invoking the convexity of MS again, we have

J ¼ ðDþF þGÞ=3 2 MS:

Then we know that J0 ¼ WA0B0
J0W

y
A0B0

and for i ¼ 1, 2,
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Jiþ1 ¼ WA0B0
JiW

y
A0B0

:

Step 3: Define K ¼ ðKiÞ3i¼0 such that

K0 ¼ J0; K1 ¼WA0B0
J1W

y
A0B0

; Kiþ1 ¼WA0B0
KiW

y
A0B0

;

where i ¼ 1, 2. According to S3, we have K 2 MS.
Therefore,

L ¼ ðLiÞ3i¼0 ¼ ðJ þKÞ=2 2 MS:

We know that for i ¼ 1, 2,

L1 ¼ UA0B0
L1U

y
A0B0

; Liþ1 ¼ WA0B0
LiW

y
A0B0

:

Step 4: Invoking S4, we obtain that

L ð�Þ ¼ ðLið�ÞÞ3i¼0 ¼ Vð�ÞA1B1LVð�ÞyA1B1
2 MS;

then M ¼ ðR2�
0 Lið�Þd�Þ3i¼0 2 MS. One can readily ver-

ify that N satisfies Eqs. (1) and (2), where

N ¼ ðNiÞ3i¼0 ¼
�X

�

ð�A0
� �B0

ÞMð�A0
� �B0

Þ
�
=4 2 MS:

The rest of the proof is to show that such N can not
distinguish S, i.e., Ni, N

�
i � 0, Nij�ii ¼ j�ii, PNi ¼ I

and Eqs. (1) and (2) cannot be satisfied simultaneously. We
refer the interested reader to the Supplemental Material for
a detailed calculation [28]. j

Since every LOCC POVM is also a PPT POVM, one can
conclude that S is locally indistinguishable. To the best of
our knowledge, this is the first example of d orthogonal
d � d maximally entangled states that are locally
indistinguishable.

Due to the special structure of S, we further observe a
quite surprising entanglement discrimination catalysis
phenomenon happens on S. More precisely, with a

two-qubit maximally entangled state as resource, says
j�0i, we can distinguish among the members of S locally,
and after the discrimination, we are still left with an intact
copy of j�0i. The scheme is very simple: we use the given
entanglement resource to distinguish the states of subsys-
tem A0 �B0 via a teleportation protocol, then the out-
come i indicates that the original state to be distinguished
is just j�iiAB. After that, one can recover j�0i from the
state of subsystem A1 �B1: If i ¼ 0, then the state of
subsystem A1 �B1 is j�0i. Otherwise, the state of sub-
systemA1�B1 is j�1i, and one can obtain an exact copy
of j�0i by applying �1 to subsystem B1.
It is interesting that not only catalysts help local entan-

glement discrimination, but also tensor operation does. We
shall show that there is some locally indistinguishable set
K such that for some finite m> 1, K�m becomes locally
distinguishable, where that the tensor product S1 � S2 of
two sets S1 and S2 is defined as fjs1i � js2i: jsii 2 Sig.
Before presenting this set K, we shall point out an interest-
ing property of PPT distinguishability: if a set of states is
PPT indistinguishable, then sharing an entangled pure state
with a sufficiently small amount of entanglement cannot
make them PPT distinguishable. This property can be
regarded as a direct consequence of the fact that the set
of PPT POVMs with a fixed number of outcomes is a
closed set. Here we provide a slightly refined statement.
Suppose the optimal average success probability for dis-
tinguishing a set of bipartite orthogonal states f�i: 0 � i �
n� 1g on A �B with a priori probability distribution
fp0; . . . ; pn�1g by PPT POVM is q, where q < 1. That is,P

n�1
i¼0 pi trðEi�iÞ � q is valid for any PPT POVM ðEiÞn�1

i¼0 .

Then we have
Lemma 1.—f�i � 	: 0 � i � n� 1g is PPT indistin-

guishable for any j	iAB ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
1� "

p j00i þ ffiffiffi
"

p j11i with
0 � " < ð1� qÞ2.
Proof.—For any PPT POVM ðEiÞn�1

i¼0 , the average suc-

cess probability for distinguishing f�i � 	: 0 � i � ng
with a prior probability distribution fp0; . . . ; pn�1g is

X
i

pi tr½Eið�i � 	Þ� ¼X
i

fpi tr½Eið�i � 
Þ� þ pi tr½Eið�i � ðQ� SÞÞ�g � qþX
i

pi tr½Eið�i �QÞ� � q

þX
i

pi trð�i �QÞ ¼ qþ TrQ ¼ qþ ffiffiffi
"

p
< 1;

where Q and S are rank-1 positive operators with orthogo-
nal support such that 	� 
 ¼ Q� S with 
 ¼ j00ih00j.
Thus, trQ ¼ ffiffiffi

"
p

.
One can therefore conclude that f�i�	: 0� i�n�1g

cannot be distinguished by PPT POVM. j
According to Theorem 2 and Lemma 1, we can choose a

partially entangled state j
iAB ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �

p j00i þ ffiffiffiffi
�

p j11i
with 0< �< 1=2, such that K ¼ S � fj
ig is PPT
indistinguishable.

Theorem 3.—There exists some finite m such that K�m is
locally distinguishable.
Proof.—We shall see that K�m ¼ S�m � fj
i�mg can be

distinguished by the following two-step LOCC protocol,
where m ¼ d� 1

log2ð1��Þe:
Step 1: Transform j
i�mAB into j�0i by LOCC, which

can be accomplished according to the condition for
entanglement transformation between bipartite pure
states [29].
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Step 2: Use j�0i to distinguish S�m: For any state
j�i1i � j�i2i � . . . � j�imi 2 S�m, by using j�0i, we can

identify i1 and get another j�0i, then identify i2 and obtain
j�0i again, etc. After identifying i1; i2; . . . ; im, the dis-
crimination is finished. j

The above set K has an interesting implication in
studying the local zero-error classical capacity of quan-
tum channels, where LOCC discrimination has important
applications [12,13,30]. We can construct a channel
E: f1; 2; 3; 4g � B � C with one classical sender Alice
and two quantum receivers Bob and Charlie as follows:
for an input 0 � i � 3, the output j�iiBC � j
iBC is
distributed between Bob and Charlie. According to
Theorem 2 and Lemma 1, Bob and Charlie are not
able to distinguish the output states perfectly. Thus we
know that the one-shot local zero-error classical capacity
of E is strictly less than log24 ¼ 2 bits. Suppose Alice
now sends i1i2 . . . im, where m is chosen as in the proof
of Theorem 3. We know that Bob and Charlie can
identify i1i2 . . . im perfectly. Thus Alice can transmit
log24

m ¼ 2m bits perfectly, which means that multishot
of E can render this noisy quantum channel to have
optimal capacity.

The techniques used in the proof of Theorem 2 can be
employed to study many other problems by PPT opera-

tions. For instance, we can show that
ffiffiffiffiffiffiffiffi
2=3

p j00iþ ffiffiffiffiffiffiffiffi
1=3

p j11i
is the minimal entanglement resource required for distin-
guishing three Bell states under PPT POVM. More pre-
cisely, we have

Theorem 4.—T ¼ fj�iiA0B0
� j	iA1B1

g3i¼1 is PPT distin-

guishable for a normalized j	i ¼ P
n�1
i¼0

ffiffiffiffiffi
�i

p jiii with �0 �
�1 � . . . � �n�1 � 0 if and only if �0 � 2=3.

A detailed proof of this theorem, together with other new
results will be presented in a forthcoming paper.

Conclusion.—In this Letter, we present four orthogonal
ququad-ququad maximally entangled states that cannot be
distinguished locally. Later, the phenomenon entanglement
catalyst discrimination is observed. Based on this result, we
show that there is a setK which is locally indistinguishable,
but K�m can be distinguished by LOCC for some m> 1.
Thenwe construct a classical-quantumnoisy channelwhere
multishot can make it noiseless in transmitting classical
information.
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