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We discuss a scheme to measure the many-body entanglement growth during quench dynamics with

bosonic atoms in optical lattices. By making use of a 1D or 2D setup in which two copies of the same state

are prepared, we show how arbitrary order Rényi entropies can be extracted by using tunnel coupling

between the copies and measurement of the parity of on-site occupation numbers, as has been performed

in recent experiments. We illustrate these ideas for a superfluid-Mott insulator quench in the Bose-

Hubbard model, and also for hard-core bosons, and show that the scheme is robust against imperfections

in the measurements.
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Entanglement is a basic feature of many-body quantum
systems [1] and underlies the complexity of simulating
quantum physics on a classical computer [2]. The expo-
nential scaling of resources to represent and propagate a
general many-body quantum state on a classical device has
motivated the development of quantum simulators [3], and
significant progress has been made in building both analog
and digital quantum simulators with cold atoms and ions
for equilibrium and nonequilibrium dynamics. This is
exemplified by quantitative measurement of phase dia-
grams, studies of quantum phase transitions, and quench
dynamics. An outstanding challenge, however, is direct
measurement of (potentially large scale) entanglement
and monitoring entanglement growth in nonequilibrium
dynamics. Below, we address these questions by discussing
measurement scenarios for entanglement entropies, using
multiple copies of a quantum system and measurements
with a quantum gas microscope [4,5]. We illustrate these
ideas in the context of quench dynamics of bosons in 1D
optical lattices. This example is motivated by recent ex-
periments [6], where quench dynamics were observable for
times not accessible to (classical) time-dependent density
matrix renormalization group (TDMRG) simulations of
Hubbard dynamics [7–10] due to entanglement growth
[11–14]. Here the measurement protocol will directly re-
veal this entanglement growth and simultaneously monitor
the purity of the total system state. By comparing copies,
these tools will also provide a protocol for the verification
of a quantum simulator.

We are interested in quantum dynamics of an (ideally)
isolated quantum system as represented by our atomic
quantum simulator. In particular, we study a system where
we prepare an initial state j�ð0Þi, which evolves with a
Hamiltonian H as j�ðtÞi ¼ expð�iHt=@Þj�ð0Þi. If the

system can be divided into two subsystems A and B and
is in a pure state at time t; � ¼ j�ih�j, then the entangle-
ment of the system can be characterized in terms of the
entropy of the reduced density matrix, �A ¼ trBf�g. This is
commonly computed as the von Neumann entropy
SVNð�Þ ¼ �trf� log�g. If A and B are in a product state
j�i ¼ j�Ai � j�Bi, then �A will also represent a pure
state with trf�2

Ag ¼ 1, and SVNð�AÞ ¼ 0. Below, we will
discuss measurement of the Rényi entropy of order n � 2,
Snð�Þ ¼ 1

1�n log trf�ng, which gives quantitative bounds

for a variety of measures of entanglement, e.g., the con-
currence [15–18], and also SVNð�Þ. For example, we know
that SVNð�Þ½¼ limn!1Snð�Þ�, and as dSnð�Þ=dn � 0,
SVNð�Þ � S2ð�Þ. From d2Sn=dn

2 � 0, a stronger bound
SVNð�Þ � 2S2ð�Þ � S3ð�Þ can be obtained [19] if we mea-
sure multiple Rényi entropies.
In order to measure the Rényi entropy Snð�Þ for a state

�, we require n copies of the state prepared in parallel and
the possibility to implement operations that exchange the n
copies [15,20–24]. As shown in Ref. [20], the quantity
trf�ng can be written [20,25] as trf�ng ¼ trfVn�

�ng, where
the shift operator on n copies, Vnjc 1i . . . jc ni ¼
jc nijc 1i . . . jc n�1i. Therefore, the measurement of the
Rényi entropy can be reduced to determining the expecta-
tion value hVni on the n copies. Measurements of inner
products can be made in this way by entangling a state with
auxiliary qubits or a quantum switch [20,26–28], as has
been demonstrated for a few entangled photons [29–31]. In
Ref. [22], it was shown that a beam-splitter operation on
two copies is sufficient to measure the purity trf�2g for
bosonic systems. Our study of entanglement growth is
based on generalizing these techniques to measure Rényi
entropies of arbitrary order n. Remarkably, the correspond-
ing experimental tools (controlled tunneling between
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multiple copies and measurement of on-site occupation
numbers modulo n) are now available with single-site
addressing in a quantum gas microscope [4,5].

Below, we discuss the protocol to measure Snð�Þ for
arbitrary n and summarize the details of the procedure for
the simplest example n ¼ 2. We also provide a simplified
scheme for hard-core bosons and discuss the robustness of
measurements with respect to imperfections. We note
throughout that this scheme allows simultaneous measure-
ment of Snð�Þ for the whole state and for every reduced
subsystem (i.e., � ¼ �A) [32]. Thus, while measurement of
the entanglement in this form is based on the assumptions
(i) that the initial states for the whole system are pure and
(ii) that each evolves under the same Hamiltonian, these
assumptions can be checked directly by measuring Snð�Þ
for the whole system. In quench dynamics, these assump-
tions should be well fulfilled in experiments beginning
from low-entropy states [33,34]. Moreover, by monitoring
the copies over time and measuring, e.g., trf�1�2g [20,25],
this scheme provides a means to verify a quantum simula-
tor, determining whether the evolution of the copies is
coherent and identical on the level of many-body wave
functions.

Scheme for arbitrary n.—The procedure to measure the
Rényi entropy Snð�Þ consists of three steps. (i) n identical
instances of the many-body state are prepared in parallel
(either in n 1D chains or in n planes in 2D). This can be
performed, e.g., by beginning from a low-entropy initial
state such as a Mott insulator [33,34] and manipulating the
lattice potential identically for the two copies, i.e., allow-
ing them to evolve under the same Hamiltonian. In this
step, the lattice depth between the copies must remain large
so that these are isolated from each other. (ii) We then
make the lattice deep within each copy of the state, to
prevent tunneling, and perform a discrete Fourier trans-
form UFT

n operation on the copies. If the bosonic annihila-
tion operator for site i in copy c 2 f1; . . . ; ng is ai;c, then

UFT
n : aj;k ! 1

ffiffiffi

n
p X

n

l¼1

aj;le
ið2�=nÞðk�1Þðl�1Þ: (1)

This can be achieved by a successive application of tun-
neling between the copies and shifting the relative poten-
tial depths (to produce elements analogous to beam
splitters and phase shifters in the optical implementation
of this operation [35]). This operation is very simple for
small n, as discussed below, and should be performed on
the whole system in parallel. (iii) We then perform a site-
resolved measurement of the on-site particle number ni;c in
each copy, modulo n. We can then determine the measured

value of the swap operator VR
n for all possible subsystems

being swapped, R, in parallel (where we note that R can
also denote the whole system), as these commute. The
possible measurement outcomes for the swap operations

VR
n , feij2�=njj ¼ 1 . . . ng can then be computed from

the number measurements as
Q

j2Rei2�=n
P

n
c¼1

nj;cðc�1Þ.

We illustrate this scheme for n ¼ 2 below and n ¼ 3 in
the Supplemental Material [25].
Scheme for n ¼ 2.—As an example, the measurement of

the Rényi entropy for n ¼ 2 [22] is illustrated in Fig. 1. In
step (ii), the Fourier transform for two copies is a beam-
splitter operation:

ai;1 ! ðai;1 þ ai;2Þ=
ffiffiffi

2
p

; ai;2 ! ðai;2 � ai;1Þ=
ffiffiffi

2
p

: (2)

This can be achieved by lowering the barrier between the
two copies (e.g., using a superlattice [36]) and allowing the
atoms to tunnel from one site to its copy for a time T ¼
�=ð4J12Þ, where J12 is the tunneling rate. For this step to
work in this form, interactions between atoms have to be
turned off during this process, e.g., via a Feshbach reso-
nance. We will show below that this requirement can be
relaxed in an alternative method for hard-core bosons. The
number measurement modulo 2 in step (iii) is then a parity
measurement of the site-resolved occupation number in
each site and copy fni;cg, exactly as was performed in recent

quantum gas microscope experiments [4,5].

The measured value of the swap operator, VR
2 , can be

computed as ð�1Þ
P

i2R
ni;2 , i.e., simply by determining

whether the total atom number in block R of copy 2 after
the measurement is even or odd. This process is illustrated
in Fig. 1(b) for one measurement instance, and repeating

this process allows the expectation value hVR
2 i to be com-

puted. To obtain this relationship between the occupation

numbers after the beam-splitter operation and hVR
2 i, we

note that each possible measurement outcome fni;cg corre-
sponds to the measurement of one of the two eigenvalues

of the (Hermitian) operators VR
2 , which are �1. This can

FIG. 1 (color online). (a) Measurement of n ¼ 2 Rényi en-
tropy for bosons in an optical lattice. First, two instances of the
many-body state are produced (shown here for a single site in a
1D chain or 2D plane). Then tunneling is switched off within
each copy, and the barrier between the copies is lowered to
realize a beam-splitter operation between the copies. Finally, the
parity of the atom number is measured at each site. This
measurement is repeated to obtain expectation values for the
swap operator V2, from which the Rényi entropy can be com-
puted (see the text). (b) Example measurement outcome for a
single shot on a quantum chain. Here the measurement result for

the whole system swap operator Vf1;...;7g
2 is 1, since the total

number of particles in copy 2 is even. For the swap of the first

three sites Vf1;2;3g
2 is �1, since this number is odd.
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be seen as follows: The eigenspaces of VR
2 are the sub-

spaces of the total Hilbert space that are (anti)symmetric
with respect to exchange of the two copies, which we
denote by Hþ

R (H�
R). Since the swap on a subsystem

R can be constructed by local swaps of the sites j 2 R,

Vfjg, we have VR
2 ¼ Q

j2RVfjg
2 . Since all of the Vfjg

2 com-

mute (½Vfjg
2 ; Vfkg

2 � ¼ 0), we need to consider only a single

site. Now, if we denote the annihilation operator for bosons
on site i of copy c by ai;c, c 2 f1; 2g, the tunneling proce-

dure in step (ii) gives us Eq. (2). This maps the symmetric
subspace of the two modes aj;1 and aj;2 to the subspace of

states with an even number of atoms in mode aj;2. The

antisymmetric subspace is mapped to states with an
odd number of bosons in mode aj;2. This can be seen by

noting that the antisymmetric subspace H�
j of the

two modes at site j is spanned by the states fðayj;1 �
ayj;2Þ2nþ1ðayj;1 þ ayj;2Þmjvacig, while the symmetric one

Hþ
j is spanned by fðayj;1 � ayj;2Þ2nðayj;1 þ ayj;2Þmjvacig

(where n;m ¼ 0; 1; 2; . . . ). Under the above operation,

the first set is mapped onto fðayj;2Þ2nþ1ðayj;1Þmjvacig, i.e.,
states with an odd number of atoms in aj;2, while the

second is mapped onto fðayj;2Þ2nðayj;1Þmjvacig with an even

number of atoms in aj;2. Therefore, the measurement out-

come of Vfjg is þ1 if nj;2 is even and �1 if nj;2 is odd.

Example of a Mott insulator-superfluid quench.—We
now illustrate the entropy measurement for a quench in
the Bose-Hubbard model, where quantum dynamics gen-
erates substantial entanglement in a short time [37–39]. In
Fig. 2, we plot results obtained via TDMRG calculations
from dynamics (in each copy of the system) described by

the Bose-Hubbard model (@ � 1), HBH ¼ �J
P

hi;jia
y
i aj þ

ðU=2ÞPia
y2
i a2i , where J is the tunneling rate between

neighboring sites h. . .i and U is the on-site interaction
strength. We plot both (i) a quench for soft-core bosons
from a Mott insulator state with U=J ¼ 10 to a superfluid
atU=J ¼ 1 and (ii) a quench for hard-core bosonsU ! 1,
where we begin from an initial state with one particle on
every second lattice site. Such a state could be produced in
a superlattice potential [6] or by using recently demon-
strated techniques to directly remove atoms from an initial
Mott insulator state [40].

Figure 2(a) shows SVN and S2 calculated for a bipartite
splitting in the center of a small system with 8 particles on
8 lattice sites. In this size of system, we see that the
entanglement entropy saturates as the system thermalizes
for soft-core bosons [41]. In the hard-core case, the
system is integrable, and we see large oscillations in the
entanglement entropies instead of thermalization [42,43].
Figure 2(b) shows a comparison between the von Neumann
entropy SVN and Rényi entropies Sn (for n ¼ 2; 3; 4), after
a quench in a larger system with 30 particles on 30 sites.
We see rapid growth in the entanglement of two halves of
the system, and we note that the Rényi entropies provide
relatively good bounds for the von Neumann entropy,

especially if we use the bound SVN � 2S2 � S3, which is
shown as the dashed line in the figure. Figure 2(c) shows
the number of single shot measurements required to deter-
mine the quantities in Fig. 2(b) with a relative error of �.
We note that, in these larger systems, the TDMRG simu-
lations we use to compute dynamics are limited to simu-
lating short time scales, since the von Neumann entropy
increases linearly with time [11,12]. A matrix product state
with a bond dimension D [10] is capable of representing
a maximum von Neumann entropy up to log2ðDÞ. In
Fig. 2(d), we show the evolution of the entropy as a
function of time for D ¼ 2l with 4 � l � 9, showing
clearly the different bounds for the entanglement that can
be represented. In the case of D ¼ 512 we can faithfully
simulate time scales only up to tJ � 3. The simulation
times scale �D3, and in an experiment, substantially
higher entanglement entropies could be generated than
are accessible in reasonable time on a classical computer.
This could be demonstrated directly by measuring Snð�Þ in
an experiment.
Simplified scheme for hard-core bosons.—The measure-

ment scheme presented above relies on the ability to turn
off interactions between the atoms in order to realize the
beam-splitter operations, which can be challenging for
some atomic species. However, in certain cases this re-

FIG. 2 (color online). Entanglement buildup and measure-
ment, for both (i) soft-core bosons in 1D after a quench from
a Mott insulator at U=J ¼ 10 to a superfluid at U=J ¼ 1 and
(ii) hard-core bosons with tunneling J, beginning from an initial
state where every second lattice site is occupied. (a) Quenches in
small systems with 8 particles on 8 lattice sites, showing von
Neumann and Rényi entropies for a bipartite splitting in the
center of the system; (b) the same as (a), but for a system of 30
particles on 30 sites, and also including 2S2 � S3 (dotted line).
(c) The number of single shot measurements (#) required to
determine Sn for the Bose-Hubbard quench in (b) with a relative
accuracy �. For 2S2 � S3, measurements are distributed be-
tween (S2) and (S3) to minimize the total number.
(d) Limitations of TDMRG simulations for the Bose-Hubbard
quench based on different bond dimensions D [10], shown here
with D ¼ 2l for 4 � l � 9, with corresponding bound SVN ¼ l.
Note that we use logarithms to base 2 throughout.
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quirement can be relaxed; e.g., in the case of hard-core
bosons U 	 J, where we have at most one atom per site,
the measurement can be performed without switching the
interaction strength. For measurement of S2ð�Þ, the
symmetric subspace at site j, Hþ

j , is spanned by

fjvaci; ðayj;1 þ ayj;2Þjvaci; ayj;1ayj;2jvacig, while the antisym-

metric one,H�
j , is spanned by ðayj;1 � ayj;2Þjvaci. Of those

four states the tunnel coupling in step (ii) of the measure-
ment scheme affects only states with one particle in total
on the copies of the lattice site. The other two states are
invariant (either because there are no atoms or because
tunneling is suppressed due to the hard-core constraint).

Thus we map Hþ
j ! fjvaci; ayj;1jvaci; ayj;1ayj;2jvacig and

H�
j ! ayj;2jvaci in step (ii). Measurement of the on-site

atom number can then be used to directly distinguish

between the two eigenspaces of Vfjg
2 and thus determine

the measurement result. We extend this to the measurement
of S3ð�Þ in the Supplemental Material [25].

Robustness against imperfections.—We now analyze the
robustness of the measurements to errors in the measure-
ment steps, especially imperfect implementation of the
beam-splitter operations in step (ii). Two main imperfec-
tions can occur here, arising from timing errors or residual
interactions. In the case of timing errors where T ¼
�=ð4J12Þ þ �=J12, we can show analytically [25] that the
measured value of tr�2 will always be smaller than the
actual value by an amount proportional to �2, thus leaving a
clear lower bound. In Fig. 3(a), we plot results obtained
from a full TDMRG simulation of the Bose-Hubbard
quench from Fig. 2 and the subsequent measurement op-
eration. For timing errors on the order of 1%we find a� on
the order of 1% which increases slowly with increasing
entanglement. In the same calculation, we also consider
errors introduced by residual interparticle interactions
U�=J12 present during the measurement operation. From
Fig. 3(b), we see that even in the case of an interaction of
10% of the beam-splitter tunneling amplitude J12 we find
resulting errors on the order of only 1% which increase
slowly with time.

Nonidentical copies and verification of a quantum
simulator.—Another type of imperfection is where the

‘‘copies’’ undergo different dynamics before the measure-
ment process, e.g., due to different Hamiltonians. Such
errors are relevant for characterizing the accuracy of the
quantum simulator itself, as well as constituting an error in
the measurement scheme. In Fig. 4(a), we show results
when we have slightly different tunneling amplitudes in
each copy after the Bose-Hubbard quench. We find that the
error introduced by 2% deviations in J corresponds to a �
of 1% on a time scale of tJ � 1, which increases with time.
Figure 4(b) shows results from a trapped case, where we
begin with slightly different trapping potentials in the
individual copies and then perform the same interaction
quench from U=J ¼ 10 to U=J ¼ 1. On a time scale tJ �
1, errors of 1% lead to deviations on the order of 0.1%. In
this case, the quantity that is actually measured is trf�1�2g,
where �1 and �2 are the density operators of the different
copies. This can be used as a tool to verify the quantum
simulator in the case that the evolutions should be identical
or to investigate dynamics with the evolution Hamiltonians
being set to slightly different values. The latter could be
interesting in regimes of the Bose-Hubbard model ex-
pected to display signatures of quantum chaos [14,44,45],
where the inner product might decay exponentially in
analogy with single-particle systems exhibiting quantum
chaos [46–48].
Summary.—We have analyzed measurement of Rényi

entropies of 1D bosons in an optical lattice during a
quench, by using techniques currently available in quan-
tum gas microscope experiments. Such a tool can be used
to verify the coherence and accuracy of a 1D and 2D
quantum simulator and determine the entanglement growth
in a quantum quench, helping the experiments to diagnose
regimes where dynamics can be realized that are not
accessible to present classical computations.
We thank I. Bloch, M. Greiner, M. Lukin, A. Läuchli, F.

Mintert, E. Rico Ortega, T. Pichler, and M. Tiersch, for
helpful and motivating discussions. In the final stages of
this work we have become aware of Ref. [28] on measuring
entanglement entropies of Hamiltonian ground states using
a single spin as a quantum switch connecting n copies of

FIG. 3 (color online). Errors � ¼ ½trð�2
a...MÞ �hQM

j¼a e
i�n̂j it�=trð�2

a...MÞ that are introduced by an imperfect

beam-splitter operation, determined via TDMRG simulation of
the Bose-Hubbard quench in Fig. 2(a) and the resulting mea-
surement process. (a) The effect of timing errors, with T ¼
�=ð4J12Þ þ �; (b) error introduced by a finite interaction strength
u� ¼ U�=J12 during the measurement.

FIG. 4 (color online). Deviations resulting from slightly differ-
ent evolutions in the two copies, � ¼ ½trð�2

a...MÞ �
hQM

j¼a e
i�n̂j it�=trð�2

a...MÞ. (a) Results for slightly different tunnel-

ing amplitudes in each copy after the Mott insulator-superfluid
quench from Fig. 2(a). (b) Results for a case where each copy has
an additional harmonic trapping potential with !1 ¼
2
 10JðN=2Þ�2 for the first copy, and we otherwise perform
the same quench as in (a).
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[15] F. Mintert, M. Kuś, and A. Buchleitner, Phys. Rev. Lett.

95, 260502 (2005).
[16] L. Aolita and F. Mintert, Phys. Rev. Lett. 97, 050501

(2006).
[17] F. Mintert and A. Buchleitner, Phys. Rev. Lett. 98, 140505

(2007).
[18] F. Mintert, Appl. Phys. B 89, 493 (2007).
[19] K. Zyczkowski, Open Syst. Inf. Dyn. 10, 297 (2003).
[20] A. K. Ekert, C.M. Alves, D.K. L. Oi, M. Horodecki, P.

Horodecki, and L. C. Kwek, Phys. Rev. Lett. 88, 217901
(2002).

[21] P. Horodecki and A. Ekert, Phys. Rev. Lett. 89, 127902
(2002).

[22] C.M. Alves and D. Jaksch, Phys. Rev. Lett. 93, 110501
(2004).

[23] R. N. Palmer, C. Moura Alves, and D. Jaksch, Phys. Rev.
A 72, 042335 (2005).

[24] G. K. Brennen, Quantum Inf. Comput. 3, 619 (2003).
[25] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.109.020505 for more
information.

[26] M. Müller, I. Lesanovsky, H. Weimer, H. P. Büchler, and P.
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