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We present an ab initio determination of the shear viscosity � of the unitary Fermi gas, based on finite

temperature quantum Monte Carlo calculations and the Kubo linear-response formalism. We determine

the temperature dependence of the shear viscosity-to-entropy density ratio �=s. The minimum of �=s

appears to be located above the critical temperature for the superfluid-to-normal phase transition with the

most probable value being ð�=sÞmin � 0:2@=kB, which is close the Kovtun-Son-Starinets universal value

@=ð4�kBÞ.
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The unitary Fermi gas (UFG) represents a dilute but
strongly correlated system, where the s-wave scattering
between fermions saturates the unitarity bound for the
cross section �ðkÞ � 4�=k2 (k being the relative wave
vector of colliding particles). The system is, therefore,
characterized by the absence of intrinsic scales, making it
universal, i.e., independent of the details of the interaction.
On the other hand, the effects of interaction have to be
treated nonperturbatively because of the lack of any small
parameter. The extraordinary progress in experimental
methods over the last decade has brought about the physi-
cal realization of such a system in the form of an ultracold
gas of fermionic atoms [1]. As a consequence, the UFG has
provided a new paradigm for many strongly interacting
Fermi systems, attracting attention of theoretical physicists
in various areas, including string theory, the quark-gluon
plasma, neutron stars, nuclei, and to a certain extent
high-Tc superconductivity [2].

Over the last few years, an impressive effort has been
underway, both experimentally and theoretically, to estab-
lish the physical properties of the UFG and reveal its
strongly correlated nature. One of the most prominent
manifestations of such strong correlations is the observa-
tion of nearly ideal hydrodynamic behavior [3–5]. Studies
of the transport properties of these systems are largely
inspired by a conjecture formulated by Kovtun, Son, and
Starinets (KSS) of the existence of a lower bound �=s �
@=ð4�kBÞ on the ratio of the shear viscosity � to the
entropy density s for any system [6]. As the bound is
saturated for the case of strongly coupled N ¼ 4 super-
symmetric Yang-Mills theory, it is expected that strongly
correlated quantum systems are close to this bound.
Indeed, very different physical systems known to be
strongly interacting appear to be very close to the KSS
bound: (i) the quark-gluon plasma created in heavy ion
collisions at the RHIC obey �=s � 0:4@=kB, (ii) ultracold
atomic gases at unitarity display �=s � 0:5@=kB; see [7]
and references therein for an extensive overview. It has

also been predicted that low-energy electrons in graphene
monolayers are characterized by a low value of �=s, of the
same order as that of the quark-gluon plasma and ultracold
atomic gases [8].
In general, viscous (nonsuperfluid) hydrodynamics is

characterized by two viscosity coefficients: the shear vis-
cosity � and the bulk viscosity � . Contrary to the quark-
gluon plasma, where the bulk viscosity is nonzero and can
be a significant source of dissipation (especially near a
phase transition), the bulk viscosity of the UFG vanishes
as a result of scale invariance [9–11]. The UFG is, there-
fore, an excellent candidate for a perfect fluid, defined
as the one with the lowest transport coefficients � and �
allowed by quantum mechanics.
A large class of theoretical methods has been used to

determine the transport coefficients of the UFG for
homogeneous and trapped systems [12–20]. Here, an
ab initio calculation of the shear viscosity of the UFG is
presented within the framework of the path integral
Monte Carlo (PIMC) approach [21], which has been suc-
cessfully used to compute other properties of the UFG
[22–24]. Contrary to the previous ab initio calculations
with the ‘‘quenched’’ approximation, in which the fermion
determinant is set to unity [25,26], we compute the
viscosity for a system with dynamical fermions. The fact
that such a fully dynamical calculation is at all possible
is not a priori obvious and should be regarded as one
of our most important results. While statistical errors are
explicitly under control, we provide only a limited assess-
ment of systematic effects (finite density and volume).
From our results it is clear that those effects can be
controlled. While we focus our study on the shear
viscosity, we have preliminary indications that the bulk
viscosity vanishes at all temperatures, in agreement
with the scale invariance arguments mentioned above.
However, we defer more careful determinations of both
viscosities as well as better control of systematic errors to
future work.
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Transport coefficients can be theoretically determined
using linear response theory via the Kubo relations [11,27].
In order to apply such relations within the framework of
PIMC calculations, we followed the method based on the
stress-tensor correlators [25,26,28]. Within this approach,
the frequency-dependent shear viscosity is given by
(in units such that @ ¼ kB ¼ m ¼ 1)

�ð!Þ ¼ �
�xy;xyðq ¼ 0; !Þ

!
; (1)

while the static viscosity is defined in the limit of zero
frequency: � ¼ lim!!0þ�ð!Þ. The spectral density
�ij;klðq; !Þ is related to the imaginary-time (Euclidean)

stress-tensor correlator Gij;klðq; �Þ by inversion of the

relation

Gij;klðq; �Þ ¼
Z 1

0
�ij;klðq; !Þ cosh½!ð�� �=2Þ�

sinhð!�=2Þ d!; (2)

where � ¼ 1=T is the inverse temperature. In turn, the
stress-tensor correlator has the form

Gij;klðq; �Þ ¼
Z

d3re�iq�rh�̂ijðr; �Þ�̂klð0; 0Þi; (3)

where the average is performed over the grand canonical

ensemble, Ôð�Þ ¼ e�ðĤ��N̂ÞÔe��ðĤ��N̂Þ, Ĥ is the
Hamiltonian of the system, � is the chemical potential,

and N̂ is the particle number operator. The stress-tensor

operator �̂ijðrÞ is defined via the operator version of

the Euler equation (summation over doubled index is
assumed),

i½ĵkðrÞ; Ĥ� ¼ @l�̂klðrÞ; (4)

where ĵk is the current operator. Since the current operator
commutes neither with the kinetic-energy nor with the
potential-energy parts of the Hamiltonian, it is convenient

to split the stress tensor into two parts: �̂kl¼ �̂ðTÞ
kl þ�̂ðVÞ

kl .

The kinetic-energy part �̂ðTÞ
kl is well established and is the

only contribution to the shear viscosity for a zero-range
potential (see for example [15]). The potential-energy part

�̂ðVÞ
kl is more complicated, as defining the diagonal of the

stress tensor is not trivial due to scale invariance, which is
violated in our lattice calculations. Nevertheless, if we
proceed with the stress tensor which on the lattice does

not respect the sum rule
R
d3r�̂iiðrÞ ¼ 2Ĥ imposed by

the scale invariance [10], we obtain results consistent with
� ¼ 0. This matter is under further investigation.

Using the PIMC method, the stress-tensor correlator (3)
was evaluated at q ¼ 0 for 51 points in imaginary time �,
uniformly distributed in the interval [0, �] on a spatial
lattice of 83 points. Increasing the number of � points did
not affect the final results. A statistical ensemble of 5000
uncorrelated samples was generated at each temperature,
thus reducing the statistical errors to a few percent
(depending on the temperature and value of �). To estimate

the size of discretization errors, exploratory calculations on
a 103 lattice were performed. All the calculations presented
here were performed with an average particle number
density n ¼ N=V � 0:09. The systematic errors associated
with the stress-tensor correlator, related to finite volume
effects as well as effective-range corrections, are likely
�10–15% [21,29]. For a more detailed discussion, see
the Supplemental Material [30].
To determine �, one has to solve Eq. (2) numerically,

which is an ill-posed inversion problem, as there exist an
infinite number of solutions that reproduce the correlator
within its error bars. Therefore, estimating the shear vis-
cosity requires additional information. Besides the non-
negativity of the viscosity �ð!Þ � 0, the sum rule and the
asymptotic tail behavior (see [11] with subsequent correc-
tions [15,31]) have been used as a priori information.
In the unitary limit these conditions read

1

�

Z 1

0
d!

�
�ð!Þ � C

15�
ffiffiffiffi
!

p
�
¼ "

3
; (5)

where C is Tan contact density [32] and " is the energy
density. The energy density is obtained directly from PIMC
calculations, while the contact density is taken from
Ref. [33]. Based on the results for the noninteracting
Fermi gas, where �FGð!Þ / 	ð!Þ, and those obtained
within the T-matrix approach [15] or kinetic theory [17],
the shear viscosity �ð!Þ is expected to be a continuous
function with Gaussian-like structure at low frequencies,
smoothly evolving into the asymptotic tail behavior
�ð! ! 1Þ ’ C

15�
ffiffiffiffiffiffi
m!

p . Moreover, we assume that there is

no sharp structure in the spectral density in low frequency
limit (associated, for example, with well defined quasipar-
ticles), which could be overlooked during the inversion
process. We used these assumptions to construct the model
used in the inversion procedure.
To perform the inversion we applied a methodology

based on two complementary methods: singular value
decomposition (SVD) and maximum entropy method
(MEM), both described in Ref. [34]. Since these methods
are based on completely different approaches, a solution
that is in agreement simultaneously with both of them
is regarded as the most favorable scenario. In order to
estimate the stability of the combined methods with respect
to the algorithm parameters, the ‘‘bootstrap’’ strategy
was applied. Namely, about 200 reconstructions were per-
formed, with randomly generated initial parameters
(within some reasonably chosen interval). The collected
set of samples was subsequently used to evaluate the
average value of the shear viscosity and the standard
deviation (see the Supplemental Material [30] for details).
In Fig. 1, the dimensionless static shear viscosity �=n is

shown as a function of T="F, where "F ¼ ð3�2nÞ2=3=2m
is the Fermi energy of the noninteracting gas. The shear
viscosity monotonically decreases with decreasing tempera-
ture. No drastic suppression of the viscosity below the
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critical temperature of the superfluid-normal phase transi-
tion Tc ’ 0:15"F is observed. However, note that below Tc

the coefficient � describes the viscosity of the normal fluid
component only. The results on 83 and 103 lattices exhibit
satisfactory agreement. Surprisingly, our results approach
the predictions of kinetic theory already at T * 0:3"F [12].
Note that the PIMC results are significantly below all known
results in the vicinity of Tc.

In Fig. 2, the value of the entropy obtained from PIMC
calculations is shown (extracted as in Ref. [21]), together
with the results extracted from the recent high-precision
MIT measurement [35]. For temperatures T > 0:25"F,
both lattices reproduce experimental data reasonably
well. At low temperatures T < 0:25"F the 83-lattice results
deviate from the measurements, producing systematically
lower values. On the other hand, the 103-lattice results
reproduce correctly the temperature dependence of the
entropy, yet slightly overestimating the experimental
values. These discrepancies are attributed to systematic
errors that are known to be present at low temperatures
even for larger lattices [24]. Consequently, we expect the
ratio �=s to be significantly affected by uncertainties
related to the entropy at low temperatures.

In Fig. 3 the ratio �=s is presented as a function of
temperature. The PIMC calculations reveal the existence of
a deep and rather narrow minimum in �=s at temperatures
around 0:20–0:25"F, which is above Tc. Again, the ratio
�=s is located around the kinetic theory predictions
already at T * 0:3"F [12]. The estimation of the
�=s-ratio reveals ð�=sÞmin � 0:2 as the most probable
value for the minimum. This result is about 2.5 times
higher than the KSS bound �=s � 1=4� � 0:08. Such a
low value has been reported only for pure gluons as a result
of lattice calculations [25,26].

The minimum value for the ratio ð�=sÞmin � 0:2 is sig-
nificantly lower than predictions of all current calculations,
which yield a minimum ’ 0:5. However, these methods are
in principle unreliable when applied to the UFG at T ’ Tc,
where the minimum appears. Moreover, the �=s ratio
calculated from PIMC simulations is also significantly
lower than the experimental measurements [3–5], which
also give the value ’ 0:5. Note, however that these mea-
surements are performed in trapped systems. The trap-
averaged viscosity h�=ni ¼ 1

N@

R
�ðrÞd3r may affect the

determination of the minimum value. To solve this puzzle,
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FIG. 2 (color online). Entropy per particle as a function of
T="F for the 83 lattice in (red) squares and 103 lattice in (blue)
circles. The entropy per particle extracted from the recent MIT
measurement [35] is plotted with (black) crosses.
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FIG. 1 (color online). The dimensionless static shear viscosity
�=n as a function of T="F for an 83 lattice (red) squares and 103

lattice solid (blue) circles. The error bars only represent the
stability of the combined (SVD and MEM) inversion procedure
with respect to changes in the algorithm parameters. The (green)
line depicts the prediction of kinetic theory [12]. For compari-
son, recent results of the T-matrix theory produced by Enss
et al., are plotted as open (purple) circles [15].
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FIG. 3 (color online). Ratio of the shear viscosity to entropy
density �=s as a function of T="F for an 83 lattice (red) squares
and 103 lattice (blue) circles. The error bars only represent the
stability of the combined (SVD and MEM) inversion procedure
with respect to the change of algorithm parameters and do not
include systematic errors of the entropy determination. Results
of the T-matrix theory are plotted by open (purple) circles [15].
In the high- and low-temperature regimes, known asymptotics
are depicted: for T > 0:3"F the prediction of kinetic theory [12]
as a solid (green) line, and for T < 0:2"F the contribution from
phonon excitations [13] as a dotted (brown) line. The KSS bound
appears as a dashed black line.

PRL 109, 020406 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending
13 JULY 2012

020406-3



one should apply an averaging procedure to the uniform
case results, using, e.g., local density approximation. It is
well known that this procedure leads to a divergence due to
the violation of the hydrodynamic description at the edges
of the cloud [36]. To perform a reliable averaging proce-
dure, the collisionless edges should be treated using kinetic
theory. This, however, is a hard task that requires the
knowledge of second-order transport coefficients like the
relaxation time, which are currently poorly known.

Since our main result for the minimal value of �=s is
significantly lower than other predictions as well as experi-
mental results, we have performed exploratory calculations
to estimate the size of systematic effects. We have checked
the stability of the inversion procedure with respect to the
default model as well the impact of the nonzero value of
the effective range; see the Supplemental Material [30] for
details. Our conservative estimation indicates that the
minimal value of the �=s ratio is lower than 0.45.

In summary, we have presented an attempt to determine
the shear viscosity of the UFG through an ab initio PIMC
approach. The minimum value of the �=s ratio was esti-
mated to be lower than 0.45 with the most probable value
being ð�=sÞmin � 0:2, located around T � 0:20–0:25"F.
This value is close to the KSS bound and suggests that
the unitary Fermi gas is the best candidate for the perfect
fluid. As our results can be significantly affected by sys-
tematic errors, further and more precise investigations are
called for.
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[7] T. Schäfer and D. Teaney, Rep. Prog. Phys. 72, 126001 (2009).
[8] M. Müller, J. Schmalian, and L. Fritz, Phys. Rev. Lett.

103, 025301 (2009).
[9] D. T. Son, Phys. Rev. Lett. 98, 020604 (2007).
[10] Y. Nishida and D. T. Son, Phys. Rev. D 76, 086004 (2007).
[11] E. Taylor and M. Randeria, Phys. Rev. A 81, 053610

(2010).
[12] G.M. Bruun and H. Smith, Phys. Rev. A 72, 043605

(2005); 75, 043612 (2007).
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