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We theoretically demonstrate the possibility of observing the macroscopic Zeno effect for nonlinear
waveguides with localized dissipation. We show the existence of stable stationary flows, which are balanced
by losses in the dissipative domain. The macroscopic Zeno effect manifests itself in the nonmonotonic
dependence of the stationary flow on the strength of the dissipation. In particular, we highlight the
importance of the dissipation parameters in observing the phenomenon. Our results are applicable to a
large variety of systems, including the condensates of atoms or quasiparticles and optical waveguides.
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Since the pioneering work of Khalfin [1] concerning the
nonexponential decay of unstable atoms, the relation be-
tween the decay rate and measurement process was in the
focus of many studies. One of the fundamental results of
the theory, termed, after the seminal paper [2], the quantum
Zeno effect, consists in slowing down the dynamics of a
quantum system subjected to frequent measurements or a
strong coupling to another quantum system. This phe-
nomenon has been demonstrated in a rigorous mathemati-
cal framework in [2], and it received further refinements
and extension in subsequent studies [3]. Experimentally,
the quantum Zeno effect has been confirmed for single ions
[4], ultracold atoms in accelerated optical lattices [5],
atomic spin motion controlled by circularly polarized light
[6], externally driven mixtures of two hyperfine states of
neutral atoms [7], photons in a cavity [8], and the produc-
tion of cold molecular gases in an optical lattice [9]. It has
also been predicted [10,11] that the tunneling dynamics
of particles in a double-well potential can be slowed
down if the particles are removed from one of the wells.
Qualitatively similar results for the suppression of atom
losses in an open Bose-Hubbard chain were reported in
[12]. Within the limit of an infinitely strong measurement
of particles in a given spatial domain, it has been shown
that the system is projected onto a unitary dynamics in the
loss-free domain [13].

The Zeno effect is sometimes also understood in more
general terms as the effect of changing a decay law depend-
ing on the frequency of measurements [14]. Applying this
definition to a macroscopic quantum system, such as a gas
of condensed bosonic atoms, and taking into account the
fact that in the macroscopic dynamics the frequency of
measurement can be interpreted as the strength of the
induced dissipation [11], the effect of the measurement
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on the decay of the quantum system can be viewed as the
effect of dissipation on the macroscopic characteristics of
the system. Here, we assume this interpretation of the
phenomenon and address the questions on how the appear-
ance of localized losses in a waveguide is connected to the
appearance of Zeno-like dynamics. In order to emphasize
the distinction of the latter statement about the problem
with respect to the already standard and widely accepted
notion of quantum Zeno effect, we refer, below, to the
macroscopic Zeno effect (MZE), bearing in mind its mean-
field manifestation.

Losses are ubiquitous for real quantum systems owing to
coupling to an environment. Very often, the loss processes
are also spatially localized. They can be either externally
engineered (e.g., with the tip of a scanning probe micro-
scope, a local probe in a quantum gas, an absorbing spatial
domain) or intrinsically present in the form of defects and
impurities. One can therefore expect that the MZE can
manifest itself in a wide class of physical systems, includ-
ing exciton polaritons [15], magnon gases [16], surface
plasmons [17], and optics of nonlinear Kerr media [18].

We study one-dimensional nonlinear waveguides gov-
erned by the nonlinear Schrodinger equation

iq’t = _\I’xx + gl‘l’lz\lf - l’)’(x)‘lr’ (1)

where g is the nonlinearity parameter and the local loss
processes are modelled by iy(x) (for a review on the
application of complex potentials, see [19]). Since local-
ized dissipation is applied to a homogeneous condensate
(i.e., it breaks the translational invariance of the system),
this can be referred to as a dissipative defect [20]. We are
interested in stationary flows, which correspond to a
situation when an incoming flux of particles from both
ends of the waveguide is exactly balanced by the losses
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in the dissipative domain. Note that in such a statement the
counting of lost particles is replaced by computing the
number of particles that must be loaded into the system
in order to compensate the losses.

In Fig. 1, we show several examples of how such a
scenario can be realized experimentally in different physi-
cal systems. While our approach is applicable to a large
variety of physical situations, the systems we have in mind
are those described in [20-23], i.e., an atomic Bose-
Einstein condensate (BEC) subjected to removal of atoms.
In this last case, the time and coordinate are respectively
measured in units of 2w, ) ' and a, /2, where a | and w |
are the transverse linear oscillator length and frequency,
respectively, of the transverse trap, while g = a,ng, a;
being the scattering length and n, the unperturbed linear
density of the condensate. In what follows, we consider
only the case of g >0, which describes repulsive inter-
atomic interactions (or defocusing Kerr media in optical
applications).

The dissipation is described by the nonnegative local-
ized function y(x), which is characterized by two control
parameters, its amplitude I'y and characteristic width €. It
is convenient to set y(x) = I'yf(x/€), where f(x) is a
known smooth function such that max,|f(x)| = f(0) ~ 1
and max,|f,(x)| ~ 1. Then, I'y and € are proportional to
the intensity of the defect: [®_ y(x)dx o I'€. We will also
assume the most typical experimental situation where y(x)
is an even function, y(x) = y(—x), with only one maxi-
mum at x = 0. Keeping in mind the experiments of
Refs. [21-23], one can estimate I'y ~ Io,,/(eqw | ), where
I is the current of the electron beam, ¢, the electric charge
of the electron, and o, the total ionization cross section.

Stationary flows are sought in the form W(z, x) =
p(x)expli f3v(s)ds — imt], where v(x) is the superfluid
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FIG. 1 (color online). Possible experimental scenarios to ob-
serve the MZE: nonlinear optical waveguide (upper left), a
magnon waveguide (upper right), a plasmonic nanostructure
(lower left), an atomic BEC in a waveguide, and two reservoirs
(lower right).

velocity, u the chemical potential, and p?(x) = n(x) the
density. Substituting W, (7, x) into Eq. (1), we obtain

Pt up—gp—jip =0, j+ty)p*=0 (2)
where j(x) = v(x)n(x) is the superfluid current. We are
interested in the solution of Eq. (2) with a constant density
at infinity, limj,_q|p(x)| = poo. Then, u = j3p5* + gp%,
where j, = Flim,_, . j(x) is a positive constant. For any
stationary flow, the loss of particles in the defect has to be
balanced by the incoming current j,. The main objective
of the present study is to show the existence of such
stationary flows and explore the dependence of the current
Joo On the parameters of the defect.

First, we consider an example that allows for an exact
solution, extending the result of [20]. We assume a
dissipative defect of the particular form 7y(x)=
3ysech?(x/€). Then, it is a straightforward to show that
p(x) = tanh(x/€) and j(x) = —T'y€tanh®(x/€) are solu-
tions of the system (2) provided that €*(g + I'€%) = 2.
Thus, the incoming flux is linearly proportional to the
intensity of the dissipative defect j,, = I'y€, and in order
to obtain a stationary solution, any increase in the strength
of the dissipation must be compensated with an increase in
the incoming flux. In other words, if the incoming flux of
particles is increased, the excess particles can be removed
only by a stronger defect. While this result is quite intui-
tive, we show below that it does not hold in general. In
particular, we will show that for appropriate parameters, an
increasing flux can be compensated by a weaker defect.

We now focus on a dissipation with finite support,
v(x) =0 if |x| > €. This form of the dissipative term
models, in particular, the electronic beam used in
[21,22]. In order to decrease numerical errors, we choose
v(x) to be smooth at the edges of the dissipative domain,
y(x) = To(1 — x2/€%)? if |x| < €.

Since Eq. (2) is not integrable, unlike its conservative
counterpart where y(x) = 0, it is convenient to treat I',
as a parameter that increases, departing from zero.
Experimentally, this would correspond to an adiabatic
increase of the defect intensity. For I'y = 0, one recovers
two well-known solutions: a constant density p(x) = pe
and a dark soliton p(x) = po tanh(y/g/2pwx) [j(x) = 0]
for both solutions. When the defect is adiabatically
switched on, the constant density and dark soliton originate
two branches of solutions. The branch bifurcating from the
constant density consists of symmetric flows, for which the
relation p(x) = p(—x) holds. The flows that branch off
from the dark soliton are antisymmetric, p(x) = —p(—x).
From the second part of Eq. (2) it follows that both the
symmetric and antisymmetric flows possess odd currents,
J(x) = —j(=x).

Considering the behavior of the solutions in the
vicinity of x = 0, for the symmetric flows we obtain
p:(0) = p(0)[g(p*(0) — p%) — jspe']- Thus, employing
a physically obvious condition p,, > p(0) > 0, we find that
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0,:(0) < 0. We therefore arrive at the counterintuitive con-
clusion that for symmetric flows the atomic density n(x) has
a local maximum at the point of maximal dissipation.

On the other hand, for x — oo, both symmetric and
antisymmetric flows behave as

oo — p(x) x e VA, where A = 2¢p2 — 42 p" (3)

Thus, for a given density p., there exists an upper bound
for the maximal current j&™* = /g, 3/ /2 above which no
stationary flow can exist.

In Fig. 2(a) [Fig. 2(b)], we show the density profiles n(x)
of symmetric (antisymmetric) flows for different values of
the dissipation strength I'y. We observe that for the sym-
metric flows, the density possesses two deep local minima.
For a weak dissipation (e.g., I'y = 0.01), the minima are
situated outside the dissipative domain, which allows us to
compute the exact value of the density in these minima:
Nmin = 2j%Pw"/g. As the strength of the dissipation
grows, the minima move from *oo toward the center and
eventually enter the dissipative domain. For antisymmetric
flows, the dependence of the density on I’ is much weaker
pronounced [the curves for different I'y are hardly distin-
guishable on the scale of Fig. 2(b)].

FIG. 2 (color online). (a) Density distributions n(x) for sym-
metric flows for g = 1 and € = 4 and different values of I'.
Solid line: I'y = 0.01; dashed line: I'y = 1; dotted line: I'y = 10.
(b) Density distributions n(x) for antisymmetric flows for g = 1
and € = 1. Solid line: I'y = 0.1; dashed line: I'y = 1; dotted
line: I'y = 10. (¢) and (d) Current vs strength of the dissipation
for symmetric flows (with € = 4) and antisymmetric flows (with
€ = 1) obtained for g = 0.1 and g = 1; stable (unstable) flows
correspond to the solid (dotted) fragments of the curves.
(e) Currents and instability increments vs width of the defect
for symmetric [(s)] and antisymmetric [(a)] flows for g = 1 and
I'y = 1. In all panels, p,, = 1.

Now our goal is to study the dependence j,, vs I'y. The
typical results for symmetric (antisymmetric) flows are
illustrated in Fig. 2(c) [Fig. 2(d)]. When nonlinearity is
sufficiently strong (g = 1), for both types of flows one can
clearly see a global maximum of j,(I'y). When I'j exceeds
the value corresponding to this maximum, the required
current j,, decreases. This is the manifestation of the MZE.

In order to observe the MZE in an experiment, it is
important that the solutions be stable. To examine the
stability of the flows, we substitute W(z, x) = ¥, (7, x) +
e Mg, (x)eM + a* (x)e? "] into Eq. (1), linearize it with
respect to a-(x), and solve the obtained linear eigenvalue
problem. Instability occurs if there exists an eigenvalue A
with a positive real part A,. The analysis results are shown
in Figs. 2(c)-2(e). For the symmetric flows presented in
Fig. 2(c), small values of I'; do not allow for stable sta-
tionary flows (see the dotted fragments of the lines). For
instance, the symmetric flow with two local minima situ-
ated outside of the dissipative domain [shown in Fig. 2(a)
and corresponding to I'y = 0.01] is unstable. For larger
values of Iy, the symmetric flows become stable. We have
observed that the two minima of a stable symmetric flow
are always located in the dissipative domain. All antisym-
metric flows shown in Fig. 2(d) are stable. Most impor-
tantly, the parameter range in which the MZE is observed
has only stable flows. From an experimental point of view,
the existence of stable symmetric flows is very appealing,
as symmetric flows arise from the overall (symmetric)
ground state of the system.

We now elaborate on the role of the size of the defect. In
Fig. 2(e), we show the currents vs € for a fixed I'y. As the
defect becomes wider, one might expect a monotonic in-
crease of j. As can be seen from the graph, this behavior is
indeed encountered, however, only on average. Locally, it is
superimposed by a resonance-like structure that tends to
enhance the current for certain defect sizes. We also find
that stable solutions appear only when j () is a growing
function and (up to a certain degree of accuracy) the domains
of stability of the symmetric flows coincide with the domains
of instability of the antisymmetric flows, and vice versa.

So far, we have encountered two different situations: in
the case of the sech’-shaped dissipation, the branch of
stationary flows does not show the MZE; in the case of
the dissipation with finite support, the MZE has various
manifestations. The difference can be explained by exam-
ining the asymptotic behavior of the corresponding flows.
In the case of the sech?-shaped dissipation, the asymptot-
ical behavior at x — oo of the density is completely
determined by the characteristic width € of the defect
Po — p(x) ~2e~2/t while the flows supported by the
dissipation with finite support behave according to
Eq. (3). Moreover, Eq. (3) implies that there exists the
maximal possible current ju**. It appears that the presence
of such a threshold is a signature of the MZE. No such
threshold exists for the stationary flows with the
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sech’-shaped dissipation: the current, j, can be arbitrarily
large, and the MZE is not found.

However, the sech?-shaped dissipation still does not
forbid the MZE in principle, since flows obeying Eq. (3)
can also be found in this case. Let us revisit the dissipation
of the form y(x) = 3[ysech?(x/€). Substituting p(x) =
Poo — p1(x) [Where p;(x) = o(1) as x — o0] into Eq. (2)
and neglecting the terms of smaller order, one observes that
for x > 1, function p,(x) is described by the equation
P — Ap1 = 12jTolps'e >/ For p;(x) to obey the
asymptotics (3), the following two conditions must be
fulfilled: (i) A > 0—gives the maximal current j,, < joa*;
(i) VA <2/ {—yields the minimal possible current j,, >
juin — 5 oAgph /2 — €72 (if the expression under the
radical is negative, then j2i" = (). As € grows, jui" ap-
proaches ju**. Hence, the range of currents allowing the
solutions that obey Eq. (3) decreases. This leads us to the
conjecture that rapidly decaying dissipation is favorable
for the observation of the MZE. In particular, the defects
decaying faster than exponentially are more likely to dis-
play the MZE than the ones obeying exponential decaying.

We close this Letter with a discussion on the possible
experimental observation of the obtained MZE. The in-
coming flux of particles has to be generated at both ends of
the waveguide. This can be achieved by controlled pump-
ing terms in the case of quasiparticles, or by reservoirs in
the case of real particles. For light propagating in a non-
linear waveguide, such boundary conditions appear rather
naturally. But even for a finite system with no reservoir,
one can speculate that a quasistationary state is established
on intermediate time scales in a transient regime; if the
defect is switched on in a finite system that is initially in its
ground state, the stationary flow will develop out of the
symmetric initial conditions and retain its symmetry with
increasing dissipation. With time, a flow of particles to-
ward the defect is created, which mimics the boundary
conditions, applied in the preceding discussion. The con-
dition of having a defect that drops faster than exponen-
tially can be easily realized in most of the experimental
implementations suggested above.

We now support this reasoning by illustrating the gen-
eration of stationary flows through direct integration of
Eq. (1) on a finite domain subject to the boundary con-
ditions W(t, £L) = po,e " (here L is the half-width of
the computational domain). In Fig. 3, we show the tempo-
ral evolution of the atomic density for three different
widths of the defect. For all the shown evolutions, the
initial density is taken to be constant, and the chosen
boundary conditions fix the density and chemical potential
at the edges of the computational domain. Figure 3(a)
shows the evolution for a set of parameters, where a stable
symmetric stationary flow exists. After an initial decrease
in the density at the location of the defect, the system
achieves the stationary flow. In the vicinity of the origin,
one clearly observes the two local minima residing inside
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FIG. 3 (color online). Evolution of the density |W(z, x)|? start-
ing from the initial data W(0, x) = 1. For all the shown panels,
P =g =1y = 1. (a) The width of the defect is { = 4. The
generation of the symmetric stationary flow occurs. (b) and
(c¢) The width of the defect is £ = 2 and £ = 6. The symmetric
flows are unstable, and therefore no stationary flow is estab-
lished.

the defect. Indeed, the density eventually approaches the
stationary flow profile not only in the vicinity of the origin
but also in the entire computational domain. However, if
the symmetric flow is not expected to be stable [Figs. 3(b)
and 3(c)], the density profile would show ongoing distor-
tions in the vicinity of the origin and eventually lose its
symmetry. For the cases shown in panels (b) and (c), the
density tends to approach a profile corresponding to a
stable antisymmetric flow that exists for the chosen values
of € and I';y [recall that the domains of the stability of the
symmetric and antisymmetric flows alternate as shown in
Fig. 2(e)]. However, in the cases (b) and (c), truly sta-
tionary antisymmetric flows are not established because
the chosen boundary conditions can support only symmet-
ric flows, which are unstable for the chosen parameters.

In summary, we have analyzed a nonlinear waveguide
with a localized dissipative defect. We found evidence for
the appearance of the MZE for specific boundary condi-
tions and analyzed the role of the interaction and the defect
size. The observed MZE is intrinsically related to the
existence of the stable stationary flows and expressed
through nonmonotonic dependence of the intensity of the
dissipation on the density of incoming currents. The proved
existence of stable solutions for symmetric flows is very
important, as these solutions correspond to many natural
experimental situations.
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