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We study the contextuality of a three-level quantum system using classical conditional entropy of
measurement outcomes. First, we analytically construct the minimal configuration of measurements
required to reveal contextuality. Next, an entropic contextual inequality is formulated, analogous to the
entropic Bell inequalities derived by Braunstein and Caves [Phys. Rev. Lett. 61, 662 (1988)], that must be
satisfied by all noncontextual theories. We find optimal measurements for violation of this inequality. The
approach is easily extendable to higher dimensional quantum systems and more measurements. Our
theoretical findings can be verified in the laboratory with current technology.
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Introduction.—In information theory, the relation be-
tween two events can be quantified using the notion of
conditional entropy. This notion was successfully applied
to study the relation between spacelike, separated mea-
surements on different parts of an entangled quantum
system, and it was shown that conditional entropies for
measurements on such systems do not obey classical prop-
erties of entropy [1], which is yet another manifestation of
quantum nonlocality [2]. Since quantum nonlocality is
only a special case of quantum contextuality [3], it is
natural to ask whether classical properties of entropy also
fail do describe measurements in contextual scenarios.

The notion of contextuality, as introduced by Kochen
and Specker (KS) [3], can be explained as follows.
Suppose that a measurement A can be jointly performed
with either B or C. Measurements B and C are said to
provide a context for the measurement A. The measure-
ment A is contextual if its outcome does depend on whether
it was performed together with B or with C. Therefore, the
essence of contextuality is the lack of possibility to assign
an outcome to A prior to its measurement and indepen-
dently of the context in which it was performed. The
crucial observation by KS [3] was that quantum theory is
contextual for any system whose dimension is greater than
two. The seemingly different Bell theorem [4] is in fact a
special instance of the KS theorem, where contexts natu-
rally arise from the spatial separation of measurements.

In mathematical terms, quantum nonlocality and con-
textuality can be formulated in terms of probability theory.
Specifically, the reason behind both Bell and KS theorems
is the lack of joint probability distribution for all measured
observables [5-7]. For example, imagine some physical
system on which one can perform various measurements
denoted by A, A,, ..., Ay. Each measurement A; yields an
outcome a; ; (where j; enumerates outcomes) with proba-
bility p(A; = a; ;). The noncontextuality hypothesis is true
if, and only if, there exists a joint probability distribution
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for the outcomes of all observations, i.e., p(4, = aij,
Ay =ay;,...,Ay = ay ), such that one can recover all
the measurable probabilities as its marginals. For instance,
consider that the subset of measurements {Akl, ...,Akl}
with {k;,...,k} C{l,..., N} can be jointly performed,
in other words, the probability distribution p(A; =

Ak oo A, = aklvjk,) can be experimentally determined.

1
The noncontextuality hypothesis then requires that the
joint probability distribution for all measurements, p(A; =
ayj,Ay=ay;,...,Ay =ay; ) Trecovers any such

p(Ay, = Ay i Ay = ak;,jk,) as its marginal, i.e.,

P(Ak, = Ay - -,Ak, = akl,jkl)

= ZP(AI =dayj -

ay,

. AN = aN,jN).

Here, the summation is over the outcomes of all the mea-
surements A; that are not in the jointly measurable subset.
From hereon, we denote probabilities by p(A;) instead of
p(A; = a;) for notational convenience, wherever there is
no possibility of confusion.

An important question is the minimal number of mea-
surements on some quantum system that one has to per-
form in order to observe contextuality and prevent the
existence of their joint probability distribution. The cur-
rently known most economic proofs for a three-
dimensional system (qutrit) consist of 5 measurements in
the case of a state-dependent test [8] and of 13 measure-
ments in the case of a state-independent test [9]. Qutrits are
of special interest since they are not only the smallest
contextual systems, but they also physically correspond
to a single system to which the concept of nonlocality
and entanglement cannot be unambiguously applied.
Therefore, a single qutrit together with the most economic
set of contextual measurements can be considered as a
primitive of quantum contextuality in a similar sense as
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an entangled pair of qubits together with the CHSH
(Clauser-Horn-Shimony-Holt) inequality [10] is consid-
ered as a primitive of quantum nonlocality.

In this Letter, we analytically find the minimal number
of contextual measurements for a single qutrit. A new
graph theoretical method to construct joint probability
distributions is presented and it is proven that for sets of
measurements whose corresponding graphs do not contain
cycles (i.e., there are no subsets of measurements that
cyclic-commute), there always exists a joint probability
distribution reproducing quantum marginals. Next, using
the minimal set of measurements, we formulate an entropic
contextual inequality in the spirit of [1]. Finally, we find
measurement settings for an optimal violation of this in-
equality for a single qutrit.

Minimal number of contextual measurements.—In order
to find the minimal number of contextual measurements,
one is tempted to start with two measurements A and B.
However, this does not work because (i) either A and B
commute in which case quantum mechanics itself provides
a joint probability distribution, or (ii) A and B do not
commute and one can simply write p(A, B) = p(A)p(B),
a joint probability that reproduces the marginal probabil-
ities p(A) and p(B). Observe that a single particle in one
dimension for which measurements of position and mo-
mentum do not commute is not contextual because of (ii).
Next, consider three measurements: A, B, and C. The
various scenarios are as follows: (i) All three measure-
ments mutually commute, which is analogous to the case
(i) above in the two measurements scenario. (ii) All of
them do not commute, which allows us to define
p(A, B, C) = p(A)p(B)p(C). (iii) Only one pair commutes
(A and B) in which case the joint probability distribution is
p(A, B, C) = p(A, B)p(C), where p(A, B) is provided by
quantum mechanics. (iv) One pair of them (B and C) does
not commute in which case one may construct
p(A, B,C) = p(A, B)p(A, C)/p(A). This joint probability
distribution reproduces all measurable marginals; there-
fore, the system that has only two contexts is not sufficient
to refute noncontextuality. The next case of four measure-
ments was shown to be sufficient to prove this discrepancy
for a system of dimension at least four and is known as the
CHSH inequality [10].

Can we show the discrepancy for a three-level system
and only four measurements? To show that the answer is
no, it is convenient to introduce graphic notation as in
Fig. 1. Each vertex represents a measurement and edges
represent commutation between the connected measure-
ments. The only significant scenarios that do not reduce to
previous considerations are represented by the chain graph
[in Fig. 1(i)], the star graph (ii), and the cycle (iii). For
(1) we construct p(A, B, C, D) = p(A, B)p(B, C)p(C, D)/
(p(B)p(C)), for (i) p(A, B,C, D)= p(A B)p(A, C)
p(A, D)/(p(A)p(A)). Note that the probabilities on the
right-hand side of these equations exist due to the assump-

(i) (i) B (iii)

D D

FIG. 1. Graphical notation of commutation relations. Vertices
of the graph correspond to observables and edges represent
commutativity.

tion of joint measurability. Measurements corresponding to
the graph in Fig. 1(iii) do not exist for a three-level system.
This is because in order to have [A, B] = O and [A, D] = 0,
but [B, D] # 0, one requires A to be a degenerate operator.
In the case of a three-level system, this means that two
eigenvalues of A are the same and, therefore, without loss
of generality A can be set to be a projector of rank one.
Therefore, all four measurements A, B, C, and D are rank
one projectors. The cycle graph (iii) implies that both A
and C are orthogonal to B and D. Since we require that
B # D, these two projectors span a plane orthogonal to
both A and C which in three-dimensional Hilbert space
implies A = C. The problem then reduces to case (iii) for
three measurements.

For three-level systems, one requires at least five pro-
jective measurements to show the lack of joint probability
distribution. Before we proceed, let us prove one property
of the construction used above, namely that for any com-
mutation graph which does not contain cycles (tree graph),
there always exits a joint probability distribution consistent
with quantum theory. This construction is given by the
product of probability distributions corresponding to the
edges of the graph (denoted by the set E(G)) divided by
the product of probabilities of common vertices, where a
vertex i € V(G) (the set of vertices of the graph) of degree
d(i) (the number of nearest neighbors) appears d(i) — 1
times in the product, i.e.,

_ l_[(i,j)EE(G) p(A; Aj)
[levio p(A,)d0=1

Since quantum theory provides joint probability distribu-
tions for any two commuting observables, this construction
recovers any measurable marginal as can be seen by sum-
ming over all other observables, starting the summation
from the leaves (free ends of the tree). For example, for the
instance presented in Fig. 2(i), the joint probability distri-
bution is

p(Ay, ..., Ay)

— P(Ay, Ay)p(Ay, A3)p(Ay, Ay)p(Ay, As)
p(A)p(Ay)?
P(A3, Ag)p(A3, A7)
p(A3)%,

and for instance to recover p(A,, As) the summation order
is A7, Ag, Ay, A3, A;. In fact, the construction can also be

p(Ay ..., A7)

X
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FIG. 2. Two examples of graphs of observables admitting joint
probability distributions.

applied to the scenario when the commutation graph apart
from the tree structure also contains cliques (a clique is a
fully connected subgraph which, by definition, is a jointly
measurable subset).

Since all open graphs are trees for which joint probabil-
ity distribution exists, and for a three-level system, one
requires at least five projective measurements, the minimal
graph for which one can show the discrepancy is a penta-
gon (5 cycle). For other graphs with cycles smaller than
five, such as the example in Fig. 2(ii), one can always find
joint probability distributions, for example

Ag) = P(A}, Ay, A3)p(As, Ay)p(Ay, As)
o p(As)p(Ay)

p(Ay, ..

The similar case with a square (4 cycle) does not work due
to reasons already discussed. This analytic result confirms
observation in [8] that projectors corresponding to the
5 cycle are necessary and sufficient to reveal the contex-
tuality of a single three-level system.

Entropic contextual inequality.—We now focus on a
three-level system which can physically correspond to
spin 1. Spin states are represented by rank 1 projectors
A3, where s = 0, =1 and n denotes the direction of spin
projection. We say that A} is measured if it is an eigenpro-
jector of the measured observable. It is well known that the
squares of spin 1 operators S2 and S2, for two orthogonal
directions n and m can be jointly measured. An example of
the observable corresponding to this measurement is
§2 — S2. We say that this observable provides the context
{AY A%}. However, the same operator S2 can be jointly
measured with any other operator an,, where m'’ is confined
to the plane orthogonal to n; hence, there are many con-
texts for the measurement of AY.

Let us derive an entropic contextual inequality analo-
gous to the entropic Bell inequality in [1]. It involves five
projectors {A;, A,, ..., As} (A; = |A;}A;]) on which we
impose cyclic orthogonality restrictions, i.e., A;A;y; = 0,
where the subscript is modulo five. Neighboring projectors
are jointly measurable since they are orthogonal. As a
result, for every projector A; there exist two contexts
{A;, A;+}. In case of spin 1, these projectors may corre-
spond to AY, where i and i = 1 denote orthogonal direc-
tions in real space. Let us start with the assumption

that despite the fact that not all projectors are jointly
measurable, there exists a joint probability distribution
for all five projectors p(A,, ..., As). This joint probability
distribution is a noncontextual description of the measure-
ments {A;}. It is then possible to define the joint entropy
H(Al,Az, A3, A4, As), where H(A) = _Zap(A = a) X
logp(A = a) denotes the Shannon entropy. Two classical
properties of the Shannon entropy are used in the deriva-
tion of the entropic contextual inequality as in [1]. The first
is the chain rule H(A, B) = H(A|B) + H(B) and the sec-
ond is H(A|B) = H(A) = H(A, B). The latter inequality
has the intuitive interpretation that two random variables
cannot contain less information than one of them and that
conditioning cannot increase the information content of A.
The conditional entropy above is defined as

H(AIB) = ) p(B=b)H(AIB = b);
b=0,1

where the entropy H(A|B = b) is defined like standard
entropy but using conditional probabilities p(A = a|B = b).
The conditional entropy H(A|B) describes the information
content of A given the value of B.

Repeated application of the chain rule yields

H(Ay, Ay, Az, Ay, As) = H(A|A,, A3, Ay, As)
+ H(A2|A3) A4: AS)
+ H(A3|A4, As) + H(A4lAs)
+ H(As).
Using the inequality H(A|B) = H(A) = H(A, B), one then
obtains the entropic contextual inequality
H(A|As) = H(A|Ay) + H(A,|A3) + H(A31A4)
+ H(A4lAs). (1)

We define the quantity

C = H(A|As) — H(A|Ay) — H(A,|A3)
— H(A3|Ay) — H(A4lAs);

therefore, the inequality (1) can be rewritten as C = 0. For
the three-level system, the maximal violation of this in-
equality can be shown to be of magnitude 0.091 bits. The
optimal solution can be written as follows with parameters
6 = 0.2366 and ¢ = 0.1698 (see Fig. 4 where we plot C as
a function of 6 and ¢)

|4y = (sin@, cosh, 0)7,

Ay — (JCOSZQD tang 1 )T
Y \V2eose” V2 V2

|A2) = (0, cosg, —sing)’,  |A3) =(1,0,0)7,

. |A)) X |Ay)
|A,) = (0, cose, sing)7, [As) =
# = (0. cosg.sing) = Ay < [yl
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where X denotes the three-dimensional cross product. The
projectors corresponding to |A;) and |As), in addition to
orthogonality, obey the symmetries (i) {As|) = (A;| ),
(i) (As|A,) = (A;]A4), and (iii) (As|A3) = (A;|A3). These
symmetries uniquely define |A;) and |As).

The intuitive reason for the appearance of these symme-
tries in the optimal solution is the following. Maximal
violation of the entropic contextual inequality requires
maximizing H(A,|As) while simultaneously minimizing
the right-hand side of the inequality. For orthogonal pro-
jectors A and B, one has H(A|B) = p(B = 0)H(A|B = 0).
If A, B, and the state | ) are coplanar, H(A|B) = 0 because
then p(A=0)=pB=1) and p(A=1)= p(B=0).
Therefore, we need to set all pairs of projectors corre-
sponding to entropies on the right-hand side of the inequal-
ity as coplanar with |i/) as possible, while maximizing
H(A,|As). The symmetries listed above arise as a conse-
quence of these considerations. Furthermore, numerical
optimization over the five projectors and the state also
reveals these symmetries for the solution. Note that any
pure state of a three-level system violates inequality (1),
the optimal projectors being obtained from the above
solution by Euler rotations.

Discussion.—It is important to notice that all entropies
in the inequality (1) can be evaluated within quantum
theory since they refer to jointly measurable quantities.
Although the entropic inequality constructed here involves
five projectors as in [8], it is not equivalent to the penta-
gram inequality constructed there. For the pentagram in-
equality, violation is obtained if, and only if, the joint
probability distribution does not exist. Violation of the
entropic contextual inequality (1), therefore, implies vio-
lation of the pentagram inequality but the converse is not
true. The optimal projectors for violation of (1) do not
possess the symmetry of the projectors in the pentagram.
For the optimal projectors and state given above, the
violation of the pentagram inequality is 0.049, which is
less than the maximal value of +/5 — 2. The reason for the
asymmetry of optimal projectors in the inequality (1) and
in the Fig. 3 is that the projectors A; and As are special in
the sense that H(A;|As) has to be maximized, whereas
H(A;|A;y,) for i = 1,...,4 has to be minimized. On the
other hand, the pentagram inequality projectors are treated
on equal footing.

The pentagram inequality has been recently tested in the
laboratory in [11], a similar setup can be used to test the
entropic inequality as well. Entropic contextual inequal-
ities can be easily constructed for more projectors than five
and applied to higher dimensional quantum systems fol-
lowing the construction above. Since these inequalities are
not equivalent to those following from the approach in [8],
an interesting problem is to investigate the set of quantum
states that violates entropic inequalities as opposed to the
set that violates the inequalities in [8]. The earlier approach
is based on studying the extremal edges of a polyhedral

FIG. 3. Configuration of projectors leading to maximal viola-
tion of the entropic contextual inequality for three-level systems.

cone, which leads to a finite set of inequalities that are hard
to construct and interpret. Entropic contextual inequalities
are simpler to construct and carry a clear information-
theoretic interpretation. The violation of the entropic
contextual inequality indicates that the joint probability
distribution does not exist. Insistence on a joint probability
distribution would result in negative information whose
deficit is measured by the violation of the inequality.
Moreover, for a single three-level system, no entanglement
exists and, therefore, violation of the entropic inequality is
solely due to contextuality, unlike the entropic Bell in-
equality in [1], where entanglement was necessary. It is
interesting how these inequalities extend to macroscopic
systems, where entropies arise naturally in the context of
thermodynamics.

Conclusions.—In this Letter, we have constructed an
entropic contextual inequality that can be applied to the
simplest indivisible quantum system, namely a single
three-level system. After analytically showing that the

FIG. 4 (color online). The plot of positive part of C as a
function of # and ¢. Maximal violation of the entropic con-
textual inequality is seen to be 0.091 bits.
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minimal commutation graph for this system is the 5 cycle
confirming earlier observations, we constructed the opti-
mal set of projectors that maximally violate this inequality.
Note that a different information-theoretic approach to
contextuality has been considered in [12], using the notion
of min-entropy. Also, the constraints on the Shannon
entropies of marginal probabilities from the existence of
a joint probability distribution for graphs that are n cycles
has been considered in [13]. The construction of the con-
textual inequalities considered in this paper can be easily
extended to other measures of disorder that obey the in-
tuitive classical properties used in the proof. The entropic
Bell inequality derived in [1] was generalized in [14] using
the notion of mutual information; therefore, an open ques-
tion is to investigate which information-theoretic quantities
optimally reveal the lack of objective realism in quantum
systems. A further question is to fully analyze the relation
between the entropic contextual inequality derived here
and the pentagram inequality. It would also be interesting
to find optimal commutation graphs that reveal contextual-
ity for given system dimensions [15].
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