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We introduce a class of dissipative quantum spin models with local interactions and without quenched

disorder that show glassy behavior. These models are the quantum analogs of the classical facilitated spin

models. Just like their classical counterparts, quantum facilitated models display complex glassy

dynamics despite the fact that their stationary state is essentially trivial. In these systems, dynamical

arrest is a consequence of kinetic constraints and not of static ordering. These models display a quantum

version of dynamic heterogeneity: the dynamics toward relaxation is spatially correlated despite the

absence of static correlations. Associated dynamical fluctuation phenomena such as decoupling of time

scales is also observed. Moreover, we find that close to the classical limit, quantum fluctuations can

enhance glassiness, as recently reported for quantum liquids.
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Introduction.—A central problem in condensed-matter
science is that of the glass transition. Many-body systems
with excluded volume interactions, such as molecular
liquids, experience pronounced dynamical slowdown at
high densities and/or low temperatures, to the extent that
they eventually cease to relax and form the amorphous
solid we call glass. The glass transition as observed ex-
perimentally is not a phase transition but a very rapid
kinetic arrest. At low enough temperature or high enough
density, glass formers relax too slowly to be observed
experimentally in equilibrium and, thus, behave as
(nonequilibrium) solids. This solidification occurs in the
absence of any evident structural ordering, in contrast to
more conventional condensed-matter systems: in glass
formers thermodynamics changes, apparently, very little
but dynamics changes dramatically. Dynamic arrest like
that of glasses is a generic phenomenon in condensed
matter; for recent reviews see [1–4].

While the first hallmark of glass formers is kinetic arrest,
the second is dynamical heterogeneity [5]. Glass formers
appear structurally homogeneous, but their dynamics is
highly heterogeneous: as they slow down, spatial dynami-
cal correlations emerge and these become more pro-
nounced the longer the relaxation times. One theoretical
perspective on glasses in which dynamical heterogeneity
appears naturally is that of dynamical facilitation, which
posits that the origin of glassy slowing down is not to be
found in thermodynamic ordering [6] but in effective con-
straints in the dynamics (see [2] for a review). From this
perspective, slowdown, heterogeneity, and other fluctua-
tion features of glasses are rooted in the complex structure
of trajectory space. This theory has emerged from the study
of a class of idealized lattice systems, so-called kinetically
constrained models [7–9], of which the simplest represen-
tatives are the facilitated spin models [8–10].

Quantum glasses, just like their classical counterparts, are
of much current interest, among other reasons due to their

relevance to issues like supersolidity [11], quantum anneal-
ing [12], glassiness in electronic systems [13], thermaliza-
tion and many-body localization [14], and arrest in quantum
fluids [15]. Central questions in quantum many-body sys-
tems which display glassy behavior are understanding the
interplay between static and dynamic properties [16], the
relevance of quantum versus classical fluctuations [15,17],
and the emergence of spatial correlations in the relaxation
dynamics [18]. In this work, we take a first step toward
addressing these issues from a dynamical facilitation per-
spective by introducing and studying a class of open quan-
tum lattice systems that are the quantum analogs of classical
facilitated spin models of glasses. These quantum spin
systems, which are free of quenched disorder and have local
interactions, display complex glassy dynamics despite the
fact that their static properties are trivial. They also show a
quantum version of dynamic heterogeneity, a feature we
expect to be central to the dynamics of quantum glasses in
general.
Quantum facilitated models.—Our aim is to construct a

class of strongly interacting dissipative quantum many-
body systems with the following two properties: firstly,
interactions do not play an essential role in the statics and,
as a consequence, the steady state of the system has the
form of a direct product of single-site density matrices, like
in a noninteracting problem; secondly, the interactions
make the dynamics and, in particular, the relaxation to
the steady state highly spatially correlated.
Consider the lattice system of Fig. 1. On each site

i ¼ 1; . . . ; N there is a quantum two-level system, and
we identify the two levels with basis states j0ii and j1ii.
These two levels are coupled coherently via an onsite
Hamiltonian hi ¼ ��x

i , where � is the coherent coupling
strength and �x

i � j0iih1j þ j1iih0j. Each two-level system
also interacts with a thermal bath that can cause incoherent
excitation and deexcitation with rates � and �, respec-
tively. In the absence of interaction between the sites,

PRL 109, 020403 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending
13 JULY 2012

0031-9007=12=109(2)=020403(5) 020403-1 � 2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.109.020403


and under the standard Markovian approximation for the
thermal bath [19], the open quantum dynamics of each site
is described by the master equation

_�i ¼ Lið�iÞ � �i½hi; �i� þ ���
i �i�

þ
i

� �

2
f�þ

i �
�
i ; �ig þ ��þ
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f��

i �
þ
i ; �ig; (1)

with ��
i being the ladder operators defined in terms of the

usual Pauli matrices as ��
i ¼ ð�x

i � i�y
i Þ=

ffiffiffi
2

p
. This equa-

tion has as stationary solution �ðstÞ
i ��ujuiihujþ�ejeiihej,

where the unexcited (juii) and excited (jeii) states can be
written as a superposition of j0ii and j1ii, and �u;e are their

corresponding stationary occupation probabilities [20].
When the two-level systems are noninteracting, the sta-
tionary density matrix for the whole system is simply the

direct product %ðstÞ
ni ¼ N

N
i¼1 �

ðstÞ
i .

We now convert the system into an interacting problem
with the the same trivial stationary state. We introduce
interactions between nearest neighboring sites in the fol-
lowing manner: we condition the rates for both coherent
and incoherent changes at the i-th site to the state of
neighboring sites, i.e., � ! fi�, � ! fi� and � ! fi�,
where fi is a projection operator that acts only on the
nearest neighbors of i, see Fig. 1. The many-body master
equation now reads

_% ¼ Wð%Þ � �i½H;%� þXN

i¼1

�
Li%L

y
i � 1

2
fLy

i Li; %g

þ Ji%J
y
i � 1

2
fJyi Ji; %g

�
(2)

with Hamiltonian and Lindblad [19] operators given by

H¼XN

i¼1

�fi�
x
i ; Li¼

ffiffiffiffi
�

p
fi�

�
i ; Ji¼ ffiffiffiffi

�
p

fi�
þ
i : (3)

The operators fi represent kinetic constraints. Under cer-
tain general conditions for fi [20], the stationary state of

the interacting problem is the trivial one, i.e. %ðstÞ ¼ %ðstÞ
ni .

We focus on two specific choices for the constraints that

define the two models we study in detail (in dimension
d ¼ 1; d > 1 generalizations are immediate):

qFA : fi � PðeÞ
iþ1 þ PðeÞ

i�1 � PðeÞ
iþ1P

ðeÞ
i�1 (4)

qEast : fi � PðeÞ
iþ1; (5)

with PðeÞ
i � jeiihej being projectors on the excited state on

the i-th site.
The lattice models defined by Eqs. (2) and (3) are

quantum versions of the facilitated spin models for classi-
cal glasses [10]. In particular, the choice of kinetic con-
straint (4) defines a quantum Fredrickson-Andersen (qFA)
model [8,10], while that of (5) a quantum East (qEast)
model [9,10]. The classical Fredrickson-Andersen (FA) and
East models are recovered in the limit of vanishing coherent
coupling,� ¼ 0. Figure 2 sketches the effect of the kinetic
constraints. In analogy to the classical case, in both the qFA
and qEast models, there can be no evolution in a site
surrounded by unexcited neighbors [see Eqs. (4) and (5)].
In the qFA an excitation, like the central one in
the rightmost sketch, facilitates both its neighbors which
evolve with the single site master operator of Eq. (1).
In contrast, in the qEast the central excitation can only
facilitate dynamics to its right [21].

It is interesting to note that, in addition to the state %ðstÞ
ni ,

there is a second stationary state due to the kinetic con-

straints. This pure state, %ðdarkÞ � ju � � � uihu � � � uj, is a
‘‘dark state’’ that is annihilated by the Hamiltonian and

all the Lindblad operators independently, since fi%
ðdarkÞ ¼

%ðdarkÞfi ¼ 0 for all i. The dynamics defined by (2) and (3)
is therefore reducible: It has one irreducible and ‘‘inactive’’

partition composed solely of %ðdarkÞ and a second irreduc-
ible and ‘‘active’’ partition composed of everything else. In
the thermodynamic limit, N ! 1, the stationary state of

the active partition becomes %ðstÞ up to corrections which
vanish exponentially with N. In what follows we only
consider dynamics in this partition.

FIG. 1 (color online). Quantum facilitated models. A lattice of
two-level systems with coherent and incoherent excitation or
deexcitation. Interaction is via kinetic constraints fi which make
the rates on site i dependent on the state of its neighbors. The
stationary state is trivial and non-interacting, while the dynamics
is highly correlated and glassy when � � �, �.

FIG. 2 (color online). Kinetic constraints. For the classical
models, the upper panel shows three sites in a configuration,
assuming all other sites are in the 0 state. For the quantummodels,
the bottom panel shows three sites of a product basis state for
the density matrix, where we use the notation u � juihuj and
e � jeihej. Red (dark on white) symbols represent sites that
cannot evolve. Green (white on dark) symbols represent sites
where the state of neighboring sites allows for their evolution.
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Dynamical heterogeneity and slowdown of the relaxa-
tion.—We are interested in the dynamics of our quantum-
facilitated spin models in the regime where the coherent
coupling is weak and/or the temperature is low, i.e.,
� � �, �. In this regime �u � �e (see [20]), that is, the
stationary state is such that very few sites are in the excited
state e. This, however, leads to a conflict with the dynam-
ics, as the kinetic constraint on a site vanishes unless
some of its neighbors are in the excited state, and in this
regime most sites will be surrounded by unexcited sites.
The consequence is a pronounced slowdown and the
emergence of collective dynamics.

Let us consider how excitations propagate in the quan-
tum models we propose. Typically, at low �=�, �=�,
excitations will be isolated. We denote a state with such
an excitation by � � �ueu � � � (see Fig. 2). As we have
explained, the isolated excited site cannot evolve, but it
can facilitate evolution of its neighbors. Let us first con-
sider the case of the qFA model: here, the initial excitation
can facilitate the excitation of either of the neighboring
sites. This new excitation subsequently facilitates the origi-
nal site, which can now deexcite. The first process could be
either virtual or real, and it is limited by the rates � or �.
The second process will be dominated by incoherent
deexcitation with rate �. In the classical limit, the outcome
of such sequence is that an isolated excitation hops one
site. In the qFA model, excitations also propagate diffu-
sively, with an effective diffusion constant that vanishes
in the limit �=�, �=� ! 0, in analogy to the classical
FA model at low temperatures [10]. Dynamics of the qEast
model is even more complex. Because of the directionality
of the kinetic constraint, Eq. (5), the last step in the hop-
ping sequence sketched above is not allowed and the
relaxation is therefore hierarchical [2,10].

Figure 3 shows examples of quantum trajectories from
quantum jump Monte Carlo (QJMC) simulations [22]. The
trajectories for the qFA clearly show the diffusive nature of
the dynamics: when initialized from a single site in the jei
state and the rest in the jui, this initial excitation propa-
gates in a diffusive manner. Occasionally, excitations
branch out or coalesce. Because of the kinetic constraints,
excitations have to form connected chains in space and
time [2], as illustrated in the figure. The hierarchical

relaxation dynamics of the qEast model is also observed
in the trajectories of Fig. 3. For comparison, we also show
trajectories under similar conditions for the unconstrained
problem [see Eq. (1)]. These trajectories are featureless, as
there is no interaction between the sites, which then evolve
independently. Note that all three systems shown in Fig. 3
possess the same stationary properties, despite the fact that
their dynamics (and the approach to such stationary states)
is obviously different. The quantum trajectories of Fig. 3
are qualitatively similar to those of the corresponding
classical models, see, e.g., Fig. 2 of Ref. [23]. This is
despite the fact that the trajectories shown are fully quan-
tum (i.e., this is not semiclassics). A remarkable aspect is
that while one would expect the quantum dynamics to lead
to excitations that are smeared out, an initial localized
excitation remains localized at each time. Furthermore,
one of our central messages is that quantum glassy relaxa-
tion should lead to dynamical heterogeneity. The quantum
trajectories of Fig. 3 directly illustrate this feature.
The effective diffusion constant for propagation of ex-

citations in the qFA model can be estimated analytically
when �, � � � by carrying out an adiabatic elimination
of fast degrees of freedom, or by numerical simulation
of the evolution operator (2) in small lattices (see
Supplemental Material [20]). These results suggest that
the diffusion constant reads

D ¼
�
�

2
� �2

6�

�
� 4�2

�2

�
�� 2�2

�

�
þ 8�4

�3
þ � � � (6)

In the limit of zero temperature, � ¼ 0, the diffusion
constant is D ¼ 8�4=�3 to leading order in �.
Relaxation of a site initially in an unexcited state will
depend on how long it takes for the nearest excitation to
diffuse to it. If the distance is l, then the time to relax will
be �ðlÞ � l2=D. Figure 4(a) shows that this diffusive argu-
ment accounts very well for the relaxation time �relax
obtained from QJMC simulations in the qFA model. As
expected, the relaxation slows down very markedly with
the decrease of quantum fluctuations. The inset to Fig. 4(a)
shows that the relaxation time in the qEast model grows
with decreasing � even faster than in the qFA as a con-
sequence of the more restrictive kinetic constraints.

FIG. 3. Structure in trajectory space and dynamic heterogeneity. Quantum trajectories of the qFA, qEast, and unconstrained models,

from QJMC simulations for N ¼ 10 spins and periodic boundaries. We plot hPðeÞ
i iðtÞ 2 ½0; 1� � ½white, black� for all sites i ¼ 1 to N.

The rates (�, �, �) for the trajectories shown are: (1, 0.25, 0) for the qFA and (1, 0.4, 0) for the qEast and the unconstrained ones.
Space-time correlations are evident in the trajectories of the constrained models and absent in the unconstrained system.
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From the trajectories of the qFA and qEast shown in
Fig. 3, we see that, in the constrained cases considered,
when the dynamics is slow it is also heterogeneous.
Regions of space empty of excitations are slow to relax,
as they need excitations external to the region to propagate
into it for the dynamics to take place. The larger these
empty regions, the longer they take to evolve. These slow
‘‘space-time bubbles’’ [23] make the dynamics fluctuation

dominated. Just like the existence of a dark state %ðdarkÞ,
space-time bubbles are a consequence of the kinetic con-
straints: mesoscopic regions devoid of excitations look
locally like the dark state and can only become dynamical
from their outside. At low �=�, �=�, these spatial rare
regions give rise to dynamic heterogeneity.

A manifestation of dynamic heterogeneity is in the fluctu-
ations of the waiting times tw between quantum jump events
in each site. When the dynamics is spatially correlated, quan-
tum jumps are non-Poissonian and the corresponding distri-
bution of waiting times is nonexponential. This can be
quantified by the Mandel-Q parameter for the waiting times,
QMandel � ht2wi=htwi2 � 2 [24]. For correlated (bunched)
quantum jumps, we have that QMandel > 0, indicating that
the fluctuations in the waiting times can be much larger than
what is expected from a Poisson process. Figure 4(b) shows
that this is the case for the qFA model. In the glass literature,
this is often referred to as ‘‘decoupling’’ [2,5].

Interplay of quantum and classical fluctuations.—For
the system to relax, it is necessary to excite sites, which
can be done incoherently with rate � or coherently with
rate �. It would, then, seem that adding quantum fluctua-
tions to a classical facilitated system should always aid
relaxation, but this is not the case. From Eq. (6), we see
that in the qFA model, for �, � � �, the first correction
to the classical diffusion constant is negative, and only
for larger � do quantum contributions become positive;
see Fig. 5. This means that weak quantum fluctuations
enhance dynamical arrest by decreasing the propagation

rate of excitations. Figure 5(c) shows that this also holds
for the rate B for branching of excitations. Similar reen-
trance is present in other quantum facilitated models, such
as the qEast. This is because the first effect of quantum
fluctuations is to make the classical basis 0,1 different
from the quantum basis u, e; one can think of this as a
rotation by an angle proportional to � [20]. A classical
excitation collapses the wave function on a site to the
1 state, but in the u, e basis this is not just an excitation, e,
but also a projection onto u. Thus, to order �2, the
uncertainty due to quantum fluctuations has the effect of
making a classical excitation not as efficient as it would
be in the absence of quantum effects; only at order �4

do quantum fluctuations give an effective speed-up in
relaxation. This phenomenon of enhanced glassiness
due to weak quantum fluctuations near the classical limit
appears to be similar to that reported recently for glass-
forming quantum liquids in Ref. [15].
Outlook.—We expect the dynamics of glassy quantum

many-body systems with local interactions to display the
essential feature of the idealized models we introduced in
this Letter, namely a spatially fluctuating and heteroge-
neous dynamics that cannot be simply inferred from static
behavior. To understand this correlated dynamics, one
would need to uncover the effective kinetic constraints.
In this sense, we envisage quantum facilitated models as
an effective description of the more complex glassy
many-body quantum dynamics. Given the recent progress
in quantum many-body physics with cold atoms, it may
be possible to directly implement and study constrained
models in experiments. For example, Rydberg atoms [25]
exhibit strong interactions that have been shown
to lead to constraints in the coherent dynamics [26–28]
that, in conjunction with atomic decay, can give rise to
pattern formation in quantum jump trajectories [29].
Furthermore, recent work focusing on the engineering
of system-bath coupling [30,31] outlines a path for
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FIG. 4 (color online). Glassy slowing down and dynamical
correlations. (a) Average relaxation time �relax as a function of
�=� (at � ¼ 0) in the qFA model. The dots are results from
QJMC simulations. The line is the theoretical expectation for
relaxation via activated diffusion of excitations: since the initial
state has a single excitation, in a lattice of size N with periodic

boundary conditions we expect �relax � ð2=NÞPN=2
l¼1 �ðlÞ. Inset:

�relax for the qEast model. (b) Fluctuations in waiting times
between quantum jump events for the same qFA system,
quantified via QMandel.
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devising the constrained many-body jump operators
required by the models presented here.
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