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We explore numerically the shear rheology of soft repulsive particles at large volume fraction. The

interplay between viscous dissipation and thermal motion results in multiple rheological regimes

encompassing Newtonian, shear-thinning, and yield stress regimes near the ‘‘colloidal’’ glass transition

when thermal fluctuations are important, crossing over to qualitatively similar regimes near the ‘‘jam-

ming’’ transition when dissipation dominates. In the crossover regime, glass and jamming sectors coexist

and give complex flow curves. Although glass and jamming limits are characterized by similar macro-

scopic flow curves, we show that they occur over distinct time and stress scales and correspond to distinct

microscopic dynamics. We propose a simple rheological model describing the glass-to-jamming crossover

in the flow curves, and discuss the experimental implications of our results.
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The emergence of solidity in disordered assemblies of
repulsive particles is a well-known phenomenon [1]
which remains difficult to understand at a fundamental
level [2,3]. When compressed, a colloidal suspension
undergoes a ‘‘glass transition’’ from (metastable) thermal
equilibrium [4], as observed experimentally for a broad
spectrum of particle types [5]. For colloidal hard spheres
suspended in a solvent of viscosity �s, the shear viscos-
ity, �T , is a universal function of the packing fraction ’,
�T=�s ¼ Gð’Þ, independently of, e.g., particle size [6].
Solidity also emerges far from equilibrium upon com-
pressing non-Brownian suspensions of repulsive particles
across the ‘‘jamming transition’’, as in foams or granular
materials [3,5]. The viscosity �0 of a non-Brownian hard
sphere suspension is again universal, �0=�s ¼ Jð’Þ [7].
Depending on the community and the particular system
at hand, rheologists use a broad variety of functional
forms and empirical models for Gð’Þ and Jð’Þ, while
underlying physical processes for both limits are often
not distinguished in rheology textbooks [8]. Our aim is
to determine if and how these two ideal limits are
interrelated, addressing also the nonlinear rheological
regimes and the additional effects of particle size and
softness.

Glass and jamming transitions share important similar-
ities, in particular, at the rheological level. In both cases,
solidity emerges near a ‘‘critical’’ volume fraction below
which the material is a fluid whose viscosity increases
rapidly with ’. The amorphous solid at large density
responds elastically for small deformation, but flows
when a stress larger than a yield stress is applied [1]. The
dynamics becomes very heterogeneous near the critical
density; its spatial correlations are usually interpreted by
appealing to underlying phase transitions [9], though the
nature of these remains a subject of debate [2,3]. Based on
these similarities, a unified jamming phase diagram has

been proposed where thermal and athermal systems appear
as a single ‘‘jammed’’ phase [10,11].
At the theoretical level, recent results have clarified the

relation between glass and jammed phases [12–14], sug-
gesting that the jamming transition occurs well inside the
nonergodic glassy phase. For systems of soft repulsive
particles, as studied below, a glass transition line TGð’Þ
separates the fluid (at high T, low ’) from the glass (at low
T, large ’), while the jamming transition occurs upon
compression at T ¼ 0 inside the glass phase [14].
However, these static calculations shed little light on either
dynamical properties or rheology [15]. Although this theo-
retical scenario appears in broad agreement with numerical
work [11,16], glass and jamming transitions are typically
located using different sets of methods and observables,
normally requiring extrapolation [16]. Similar ambiguities
exist in experimental work where, e.g., estimates for the
location of the colloidal glass transition cover the range
’G � 0:57 . . . 0:635, depending on how the divergence of
Gð’Þ is extrapolated [4,6,17]. In the same vein, data for the
divergence of Jð’Þ for athermal suspensions lie in the
range ’J � 0:585 . . . 0:66 [7,16,18].
In this Letter, we argue that a clearer picture emerges

when the nonlinear rheology of both thermal and athermal
suspensions is considered. We use computer simulations to
investigate the flow properties of concentrated assemblies
of soft repulsive particles, and vary the relative strength of
thermal fluctuations and viscous dissipation to study the
crossover from thermalized suspensions (relevant to soft
colloids) to purely athermal ones (relevant to jammed
solids) within a single computational framework. This
setting allows us to observe and disentangle multiple rheo-
logical regimes within a single system, establishing, in
particular, unambiguously that the increases of the shear
viscosities �Tð’Þ and �0ð’Þ upon compression are unre-
lated. This has important consequences for the jamming
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phase diagram of soft particles. Although glass and jam-
ming limits are characterized by similar macroscopic flow
curves, we also show that they in fact occur over well-
separated time and stress scales and correspond to quali-
tatively different microscopic dynamics.

We analyze theoretically the behavior of sheared assem-
blies of soft repulsive particles immersed in a solvent, such
as star polymers, microgels, or dense emulsions [5].
The simplest way to model these systems at large packing
fraction is to ignore hydrodynamic interactions and
consider only pairwise repulsion between particles,
such as VðrÞ ¼ �ð1� r=aÞ��ða� rÞ, where �ðxÞ is the
Heaviside function, and a is the particle diameter [19]. We
use molecular dynamics simulations to study the steady-
state rheology of harmonic spheres, � ¼ 2, in a simple
shear flow. We simulate the following Langevin dynamics:

�

�
@~ri
@t

� _�yi ~ex

�
¼ �X

j�i

@Vðj ~ri � ~rjjÞ
@~ri

þ ~fiðtÞ; (1)

where ~ri and yi represent the position and the y coordinate
of particle i, respectively, and ~ex is the unit vector along the
x axis. The damping coefficient �, which accounts for

viscous dissipation, and the random force ~fi describing
thermal fluctuations obey the fluctuation-dissipation

relation, h ~fiðtÞ ~fjðt0ÞTi ¼ 2kBT��ij1�ðt� t0Þ, where kB is

Boltzmann’s constant.
The Langevin dynamics in Eq. (1) is characterized by

two microscopic time scales: �0 ¼ �a2=� controls the
dissipation, while �D ¼ �a2=ðkBTÞ ¼ �0�=ðkBTÞ sets the
time scale for Brownian motion. Therefore, �D and �0 are
comparable at high temperatures but become well-
separated when kBT � �, with �D � �0. The shear rate
_� introduces a third time scale, _��1, from which the Péclet
number is defined, Pe ¼ _��D. Time-scale separation at
low T allows us to separately explore the thermal regime
at small _�, Pe � 1, where Brownian motion is relevant,
and the athermal regime at larger _�, Pe � 1, where the
suspension is non-Brownian. In the alternative SLLOD
dynamics frequently used to shear suspensions [20], inertia
is included and the thermostat is the only source of dis-
sipation. Thus, the only accessible regime is Pe < 1 (with

now �D ¼
ffiffiffiffiffiffiffi
ma2

kBT

q
), and the T ! 0 limit is unphysical. By

contrast, Eq. (1) can be simulated at T ¼ 0 (i.e., Pe ¼ 1),
where the dynamics becomes similar to earlier studies of
the jamming transition [21]. Thus, Eq. (1) allows us to
study thermal and athermal systems under shear in a uni-
fied manner.

We study a three-dimensional system of N ¼ 103 har-
monic spheres, using a 50:50 mixture of spheres with
diameter ratio 1.4 to avoid crystallization [16,21]. We
measure length in units of the small particle diameter, a,
time in units of �0, and temperature in units of �=kB. We
integrate Eq. (1) at constant _� using Heun’s method with
Lees-Edwards periodic boundary conditions [20] over a

typical simulation time of at least 10= _�. We evaluate the
xy component of the shear stress, �, using the Irving-
Kirkwood formula, and deduce the shear viscosity, � ¼
�= _�. The stress and viscosity units are respectively �=a3

and �=a. For thermal simulations at low temperatures, we
combine data from Langevin and SLLOD dynamics to
broaden the range of shear rates toward very low Péclet
numbers, where SLLOD is more efficient. We have
checked that both methods yield equivalent results at equal
Pe values [22].
We first characterize the macroscopic flow properties at

T ¼ 10�4. Since �D ¼ 104, the data in Fig. 1(a) mainly
cover the thermal range, Pe < 1. Accordingly, the resulting
flow curves are typical of dense fluids sheared across the
glass transition [15,23,24]. Briefly, for densities’< ’G �
0:61, flow curves are Newtonian at low shear rates, while
for larger _�, the external flow accelerates structural relaxa-
tion leading to shear-thinning. The Newtonian viscosity,
�Tð’Þ, increases rapidly upon compression toward ’G.
Above ’G, the linear viscosity is too large to be measured,
and the system behaves instead as a solid (a glass) with a
finite yield stress, defined as �Y ¼ lim _�!0�ð _�Þ. Both the
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FIG. 1 (color online). Flow curves at different temperatures
and densities, shown as �ð _�Þ (left) or �ð _�Þ (right). Diamonds
(left) mark the state points analyzed in Fig. 3. Circles (right)
indicate thermal (closed) and athermal (open) viscosities re-
ported in Fig. 2. Flow curves are shown in blue (dot-dashed)
when thermal Newtonian behavior is observed, in red (dashed)
when thermal effects are negligible, and in black otherwise.
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shear viscosity �Tð’Þ and the yield stress �Yð’Þ can be
used to locate the glass transition, which corresponds to
either the divergence of �T , or the emergence of a finite
�Y ; see Fig. 2.

At significantly lower temperature, T ¼ 10�6, the above
phenomenology persists as long as Pe < 1, which now
corresponds to very low shear rates, _�< ��1

D ¼ 10�6 in

Fig. 1(b). Thus, we can determine a Newtonian viscosity
�Tð’Þ for _� ! 0 and ’<’G � 0:59, and a finite yield
stress above ’G. Note that ’G decreases slowly with
decreasing T; see Ref. [16]. Because �D is very large, there
now exists a broad _� window where Pe � 1 and thermal
fluctuations play little role. Surprisingly, the data in
Fig. 1(b) show that for a range of densities above the glass
transition, 0:59<’< 0:63, the system flows as a simple
Newtonian fluid when Pe � 1. This allows us to define a
second viscosity, �0, that grows upon compression toward
’J � 0:64. Finally, for ’>’J, the flow curves are mainly
characterized by a yield stress, �Yð’Þ. The shear viscos-
ities �Tð’Þ and �0ð’Þ [Fig. 2(a)] obey clearly distinct
behaviors. While the growth of �T reflects the approach
to the glass transition, ’G � 0:59, the increase in �0 is
separately controlled by the jamming transition, ’J �
0:64. Given that both viscosities are defined over distinct
density and shear rate regimes, and can be simultaneously
observed at this temperature, it is clear that they reflect
distinct phenomena, even without extrapolation to locate
’G and ’J more precisely. Correspondingly, the evolution
of �Yð’Þ in Fig. 2 is influenced by both transitions, since

solidity emerges near ’G, but �Y increases significantly
near ’J > ’G. This is consistent with the idea that jam-
ming mainly affects the very low temperature properties of
the glass phase [14].
Finally, the rheology at T ¼ 0 corresponds to Pe ¼ 1,

and so the glass physics cannot operate. Despite this com-
plete change of regime, the corresponding flow curves
shown in Fig. 1(c) appear qualitatively very similar to the
ones obtained at T ¼ 10�4 in Fig. 1(a). They are charac-
terized by a Newtonian viscosity �0 at small _� and low
density, ’<’J � 0:64, while a yield stress emerges upon
compression, ’>’J. These data are fully equivalent to
previous rheological studies of the athermal jamming tran-
sition [21], and indeed near that transition can be collapsed
using the same critical scaling. The qualitative similarity
between flow curves in Figs. 1(a) and 1(c) has created
confusion in the literature [15], where data obtained for
systems undergoing the glass transition have been incor-
rectly analyzed in the athermal scenario of [21].
The shear viscosities �T and �0 are measured over _�

windows that become well-separated at low T and Fig. 2(a)
emphasizes that the difference between the two functions
increases as T decreases, ruling out a smooth convergence
of �T to �0 for T ! 0. Instead, we find that as T ! 0,
�Tð’Þ follows the same density dependence as the equi-
librium relaxation time of the corresponding hard sphere
fluid [17], while �0 is well described by an algebraic
divergence [18]. Our results establish that the functions
Gð’Þ and Jð’Þ controlling Newtonian flow in the hard
sphere limit are conceptually and quantitatively distinct.
The yield stress is another highly sensitive indicator of

the differences between glass and jamming transitions; see
Fig. 2(b). At finite T, solid behavior emerges near ’G �
0:59 . . . 0:61, which agrees with equilibrium dynamics
studies [16]. The yield stress then increases smoothly
with ’ up to ’J � 0:64 where its density dependence
changes dramatically. Also, while �Y scales with T below
’J, it is of order unity (in our units of �=a3) above, with
only a weak T-dependence scaling approximately as
�ð’� ’JÞ. Consistent with this picture, more detailed
analysis shows that �Yð’; TÞ follows scaling behavior
near ’J very similar to the one derived in Ref. [25] for
the pressure [26]. Thus glass and jammed states, having
distinct physical origins, also display distinct stress scales,
and remain well-separated even as T ! 0 in the ‘‘glass-
jamming phase diagram’’ shown in Fig. 2(c). Note also that
while the glass transition occurs at finite T in the unsheared
system, the jamming transition exists at T ¼ 0 only, so that
these two limits never coexist.
The complex flow curves shown in Fig. 1 can be mod-

eled by assuming that the stress is an additive combination,
�ð _�Þ ¼ �G þ �J þ �s _�, of contributions from glass and
jamming physics, and from the solvent. The simplest
model for the glass contribution incorporating the appro-
priate time and stress scales is

(a)

(b)
(c)

FIG. 2 (color online). (a) Shear viscosities �T and �0 and their
distinct hard sphere limits Gð’Þ [17] and Jð’Þ [21]. (b) Density
dependence of yield stress for different temperatures, including
the T ¼ 0 limit. (c) Same data as in (b) in a glass-jamming phase
diagram.
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�G

ðkBT=a3Þ ¼
~�Gð’Þ

½1þ ð _��DÞ	��1 þ ½ _��D~�Gð’Þ��1
; (2)

with the dimensionless stress ~�Gð’Þ ¼ constþ ð’�
’GÞ�ð’J � ’Þ���ð’� ’GÞ�ð’J � ’Þ, and a dimen-
sionless time scale, ~�Gð’Þ, diverging at ’G, e.g., as
~�Gð’Þ � ð’G � ’Þ��. In this model, the viscosity diverges
at ’G, �T=�s / ~�Gð’Þ (with �s ¼ �=a), and a finite yield

stress emerges above, �Yð’ � ’GÞ ¼ ðkBT=a3Þ~�Gð’Þ
which diverges near ’J. For the jamming contribution,
we use a model consistent with the scaling discussed
in [21],

�J=ð�=a3Þ ¼ ~�Jð’Þ þ ½ð _��0Þ�	0 þ ð _��0Jð’ÞÞ�1��1; (3)

where we take ~�Jð’Þ � ð’� ’JÞ�0
�ð’� ’JÞ and

Jð’Þ � ð’J � ’Þ��0
. The entire set of data shown in

Fig. 1 can be reproduced nearly quantitatively using ex-
ponents consistent with existing results: � ¼ 0:7 [27],	 ¼
0:3 [24], � ¼ 0:8 [25], � ¼ 2:2 [16], 	0 ¼ 0:4, �0 ¼ 1:2,
and �0 ¼ 2:0 [21]. Our empirical model, Eqs. (2) and (3),
emphasizes that glass and jamming physics take place over
distinct time and stress sectors, and can be addressed by
independent theoretical means. Differing predictions for,
e.g., whether the onset of yield stress [15,28] is continuous,
as in theories of driven athermal systems [29,30], or dis-
continuous as for driven glasses [27] then make physical
sense.

The distinct nature of thermal and athermal regimes is
apparent also in microscopic dynamic correlation func-
tions. We plot the mean-squared displacements, R2ðtÞ ¼
hj ~riðtÞ � ~rið0Þj2i in Fig. 3 for fixed ’ ¼ 0:62 and different
T and _�. In the glass regime, T ¼ 10�4, R2ðtÞ displays
short-time diffusion, caged dynamics at intermediate
times, and shear-driven diffusion at long times [23,24].
At T ¼ 0, we obtain very different, superdiffusive and
diffusive, behaviors, as discussed in Ref. [31]. For inter-
mediate temperature, T ¼ 10�6, Fig. 3 shows a clear cross-
over between thermal and athermal regimes: while caged
dynamics is observed for low Pe, superdiffusive motion is
obtained at large Pe. Therefore, the thermal-athermal
crossover observed in the macroscopic rheology in Fig. 1
originates from a similar crossover at the microscopic

level. While macroscopic flow curves in Figs. 1(a)–1(c)
can easily be confused, microscopic observations as in
Fig. 3 provide a clear qualitative distinction.
We have used temperature to study the crossover

between two limits, while experimentalists might
equivalently tune particle softness. We note from
Figs. 1(a) and 2(b) that for temperatures above T � 10�5,

corresponding to thermal particle compressions ð1�
r=aÞ � T1=2 of only 10�3 . . . 10�2, the T ¼ 0 physics has
little influence on the rheological behavior. This suggests
that the jamming transition cannot be studied using soft
colloids unless T=� is extremely small. A second relevant
experimental parameter is the particle size setting the time
scale for Brownian motion, with �D � 1 s for particles of
1 
m. This implies that the present thermal-athermal
crossover should be observable in experiments by tuning
the particle size in the range 1–10 
m. Yield stress data for
emulsions [32] seem consistent with the data shown in
Fig. 2(b), but further studies are needed to confirm our
predictions.
In conclusion, we have used shear rheology to study the

relationship between glass and jamming transitions. While
both correspond to the emergence of solid behavior as
signaled by a finite yield stress, we have demonstrated
that they occur over stress and time windows that become
well-separated at low temperatures in dense repulsive sys-
tems. The glass-jamming phase diagram [Fig. 2(c)] has a
scale-separated ‘‘wing’’ between ’G and ’J, so that the
glass transition line does not extrapolate to the jamming
point for T ! 0. The two transitions can only be observed
separately in these two distinct limits: i.e., on the glass line
and at the jamming point. Any other state point in the phase
diagram is in principle affected by a combination of both
phenomena, in a way described by the simple theoretical
model of Eqs. (2) and (3). This conceptual clarification
should help rationalize both experimental data and the
scope of different theoretical approaches.
We thank M. Pica Ciamarra for discussions, and Région
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