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We study the fraction f of nucleotides involved in the formation of a cactuslike secondary structure of
random heteropolymer RNA-like molecules. In the low-temperature limit, we study this fraction as a
function of the number c¢ of different nucleotide species. We show, that with changing c, the secondary
structures of random RNAs undergo a morphological transition: f(c) — 1 for ¢ = ¢, as the chain length n
goes to infinity, signaling the formation of a virtually perfect gapless secondary structure; while f(c) <1
for ¢ > ¢, which means that a nonperfect structure with gaps is formed. The strict upper and lower
bounds 2 = ¢, = 4 are proven, and the numerical evidence for c is presented. The relevance of the
transition from the evolutional point of view is discussed.
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Genetic information in all life cells is kept within the
primary sequences of DNA and RNA molecules. Both of
them are heteropolymers consisting of four different nu-
cleotide types. Why does nature use exactly four aminoacid
bases? Could one find any properties of systems containing
DNAs or RNAs sensitive to the number of different “‘let-
ters” (i.e., different nucleotide types) used in construction
of these heteropolymers? Typically, the attempts to answer
this question are based on the chemistry of interacting
nucleotides [1], or deal with the conjectures lying in the
general information theory [2]. Here, we present a statistical
observation concerning the dependence of the RNA sec-
ondary structures on the number of nucleotide types (alpha-
bet size) ¢, which, to the best of our knowledge, was never
discussed before. (However, see the Note added in proof.)

We demonstrate the existence of a morphological tran-
sition in the statistics of the secondary structure of a random
RNA-like chain as a function of the alphabet size c. Namely,
for small ¢, ¢ = ¢, chains which are long enough can form
a perfect secondary structure, i.e., a structure in which the
fraction of paired nucleotides (i.e., connected to the com-
plementary ones via hydrogen bonds) approaches one as the
chain length goes to infinity, while for ¢ > ¢, even the best
possible secondary structure includes a finite fraction of
gaps (i.e., nucleotides that have nobody to connect with).

Note that this problem belongs to the class of satisfi-
ability ones, such as the celebrated k-satisfiabilty problem
[3-5]. Indeed, we are looking for a transition from a
situation when some problem (in our case, a search for a
perfect secondary structure) is almost surely solvable for
any random initial conditions (nucleotide sequences) to the
situation when it is almost surely unsolvable. This transi-
tion occurs with a change of alphabet size, i.e., ¢ plays a
role analogous to M /N (a ratio of the number of equations
to the number of variables) in k satisfiabilty.
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As for the particular value of the critical alphabet size at
which the transition occurs, we prove that it lies in the
interval ™" < ¢, = ™, where the lower, ¢™" = 2, and
the upper, cii™* = 4, bounds can be computed exactly. The
numerical estimates of c. are rather restrictive since ¢
takes integer values only. However, we argue below that
with some minor modification, the problem under consid-
eration can be naturally generalized to noninteger c.
Numerical evaluation of this generalized problem leads
to the value c'™ =~ 2.7.

The prediction of RNAs’ secondary structure deals with
a search for the structure with the lowest value of the free
energy among all allowed cactuslike structures. Numerous
dynamic programming algorithms are developed to that
end [6]. In the simplest possible case, one supposes that a
given chain consists of # monomer units, each unit chosen
from a set of ¢ different types (letters) A, B, C, D,.. .. These
units can form noncovalent bonds with each other, at most
one bond per unit. The energy of a bond depends on which
letters are bonded; for example, one can assign an attrac-
tion energy u to the bonds between similar letters (A-A,
B-B, etc., we call them “matches’’) and zero energy to the
bonds between different letters (A-B, A-D, etc., “mis-
matches”) [7]. The topology of secondary structures is
supposed to be ‘“‘cactuslike” (see Fig. 1), i.e., hierarchi-
cally folded and topologically isomorphic to a tree (we
suppose here that structures which are not treelike, known
as “pseudoknots,” are suppressed). To simplify the model
as much as possible, we do not allow here for any con-
straints on the minimal size of loops in the structure, the
variation in the energies of different types of matchings,
nor for the contribution of loop factors to the partition
function, or the stacking interactions (the cooperativity
in the formation of bonds between adjacent pairs of
monomers). Despite these essential simplifications, the

© 2012 American Physical Society


http://dx.doi.org/10.1103/PhysRevLett.109.018102

PRL 109, 018102 (2012)

PHYSICAL REVIEW LETTERS

week ending
6 JULY 2012

FIG. 1. (a) Secondary structure of an RNA gene HARIF (see,
for example, [23]); (b), (c) Schematic cactuslike structures of
RNA-like chains represented in Fig. 2 by Motzkin and Dyck
paths, respectively.

considered model is known to be a common ‘‘firing
ground” for the theoretical consideration of secondary
structures formed in the ensemble of messenger RNAs [8].

The partition function of the random RNA-type hetero-
polymer is known (see, for example, [9] in the context of
matching models) to satisfy the recursion:

n—1 n
gin =1+ Z Z Bijgi+1,j-18+1,n5

i=1 j=i+1
8ii = 1. (D

These equations (the analogues of which are used all
over the place in the RNA-folding theory, see, for example,
[10-13]) generate the hierarchical cactuslike RNA topol-
ogy. The term g; ; describes the statistical weight of the
part of the sequence between monomers i and j. The
Boltzmann weights B; ; (1 =i = j = n) are the statistical
weights of bonds: 8, ; = ¢*/T if i and j match, and Bij=1
otherwise. Now, the energy of the ground state is just a
limiting value of the free energy as the temperature ap-
proaches zero: E;., = limy_,T Ing,.,. After some algebra
(see [9] for details) one can reduce the expression for E to
the following form:

max
s=i+1,.,i+

[eis T Eiv15-1 + Egepixlh

where €, ; is the interaction energy between monomers i
and j; it equals u if these monomers match and O if they
do not.

For random RNA-type sequence made of ¢ letters, the
average energy of a ground state, £ ,, for n > 1 behaves
as (E) =4 f(c), where f(c) is the fraction of nucleotides
that have formed bonds. We argue that for ¢ less than a
certain value c,, there exists a perfect match, i.e., f(c) = 1,
and the fraction of connected monomers converges
to unity, while for ¢ = ¢, a finite fraction of monomers
1 — f(c) remains unmatched even in the best match, i.e.,
f(c) < 1. Below we compute the exact lower and upper
bounds for ¢, derive the upper bound for f(c) in the
¢ = ¢, region, and discuss the numerical evidence of our
conjecture.

Eiivpe = ;E%Tlngi,ﬁk = k{EH—l,H—k:

2

Consider ¢M" =2, It turns out that matching with
f(c =2)— 1 as n — oo is possible not only on average
but also for any given primary structure. Indeed, consider a
random heterpolymer RNA constituted of A and B mono-
mers, forming saturating bonds of type A-A and B-B and
construct the optimal structure as follows. Take the left end
of the chain as a starting point, and move along a sequence
until meeting the first pair of two sequential letters AA or
BB. Connect these two letters with a bond and erase them
from the sequence. Iterating this procedure, one arrives
finally to an alternating sequence of the type ABAB...
(assume, with no loss of generality, that the starting letter
is A). Connect now the first letter A from this sequence to
the last one, the next B to the B before the last A, etc. It is
clear that this algorithm results in a nested secondary
structure which leaves unmatched at most two letters
(one in the middle of the ABAB. .. sequence and, possibly,
another one in the very end). The fraction of mismatched
letters decreases as n~ ! with n, proving the conjecture. A
similar algorithm for alternating (A-B) bonding can be
easily constructed (though the fraction of mismatches de-
creases as n~'/2 in this case). Note that this lower bound is
already nontrivial: in the celebrated longest common
subsequence” problem, whose results are used for the
comparison of two linear DNA sequences, the fraction of
matches equals (see, for example, [14]) fln(c =2) =
2(\/5 — 1) < 1, and the “critical” alphabet size, at which
Jin=1,is cff = 1.

To construct the upper bound for c,, recall the one-to-
one mapping between cactuslike RNA secondary struc-
tures and discretized Brownian excursions, known as
Motzkin paths [15]. Under this mapping, shown in Fig. 2,
the gapless (perfect) secondary structures correspond to
excursions with no horizontal steps, the Dyck paths. The
total number D(n) of Dyck paths of even length # is given
by a Catalan number C, /,:

I'n+1) 2
G+ nDrg+2 3%

D(n) = C,p = 3)

where I'[n] is the I" function and the asymptotic expression
is valid for n > 1.

Consider a set of random sequences of length n. Each of
these sequences (there are ¢” of them) must correspond to a
certain perfect match, i.e., a Dyck path. Meanwhile, if one
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FIG. 2. The secondary structure of RNAs: (a) With gaps rep-
resented by Motzkin path; (b) Gapless represented by Dyck path.
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particular Dyck path corresponds to a perfect match of
some particular sequence, it simultaneously corresponds
to perfect matches of many others. Indeed, each ‘“‘up-
down” pair of steps in a Dyck path can be realized in ¢
different ways (A-A, B-B, etc.) independently of all others,
leading to a degeneracy of order ¢"/2. Thus, the number of
different primary sequences that can have perfect second-
ary structures is at most

(2\/an
B2 @

W(e, n) = ¢"2D(n) ~
One primary sequence can be represented by several Dyck
paths. Therefore, (4) is an estimate from above. Comparing
the value W(c, n) to the total number of primary sequences,
Woy(c, n) = ¢", we have for n > 1:

li

n—0oo n n—oo

lm InW(c, n) < lim InWy(n)

n—0oo n n—oo n

1 , 1
m nW(c I’l) > lim I’IW()(H) for ¢ < cgax — 4’
n

for ¢ > 2%, )

One can follow this reasoning to develop the upper
bound also for f(c) at ¢ > c¢B = 4. In this case, the
fraction of random primary sequences admitting a perfect
match among all Wy(c, n) of them is exponentially small.
Therefore, the ground states of almost all sequences should
correspond to matchings with gaps, i.e., to Motzkin paths.
The Motzkin paths with a finite fraction of gaps (horizontal
steps) produce much more possibilities for the RNA
ground states than Dyck paths of the same length. The
number of n-step Motzkin paths with m gaps is M(m, n) =

Wim)!D(n — m) and
MU — (1= pinci - ) —f]ng + 0<1H_") ©
" n

where f = =" and (6) works for n > 1 and even m — n.
How many different primary structures can have a given
Motzkin path as a ground state? Each pair of “up-down”
steps is bound to belong to the same species, as for the
Dyck paths, while each horizontal step can be chosen
independently. The total degeneracy Z is thus

Z(c, n, ) = cUm/2e0=n = n2=1/2, (7)

As f decreases, the total number of structures that can
have ground states with the fraction of matches more than
f increases and is given by

(1=fm
Wie,n )= Zlc.n, j/n)M(j, n). (8)
j=0

At some f it becomes equal to the total number of
possible primary structures Wy(c, n) = ¢", giving the
estimate for the typical value of f(c). For n > 1 the sum in
(8) can be evaluated up to the leading order using the

saddle-point approximation. One has for Aw(f,c) =

1 1aWenf).
n—o Wy(c,n) *

lim In

—fIneL — (1= f)In(1 = f); f<fo

Awlf.0)= ln(l +J75>>0; F<Ffom
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where f,, = ﬁ For f < f,, the sum in (8) is dominated

by the contribution from the upper boundary, while for
f < f,, itis given by the maximum at f,, and is, therefore,
independent of the upper summation limit. The desired
value of f(c) is defined by the solution of the equation
Aw(f,c) =0 and is plotted in Fig. 3 with a dotted
line [16].

We have analyzed numerically the statistical properties
of the ground state free energy E,(c), applying (2) to the
random sequences with different numbers of letters (nu-
cleotide types) c. In Fig. 3 we show the numeric results for
the average value of f(c) for ¢ = 2, ..., 8 for sequences of
finite length n = 200, as well as the limiting values ex-
trapolated to n — oo. The experimental values of f(c) lay
lower than the upper bound given by the theory. To go
beyond the integer values of ¢ one can use the analogue
with the linear Bernoulli matching problem [17] and re-
place the correlated matrix g;; with the uncorrelated ran-
dom matrix, whose entries are independent randomly
distributed variables taking the value u with the probability
¢! and 0 otherwise. The numerical results seem to show
that this simplified model belongs to the same universality
class, and the change in f(c) due to the removal of corre-
lations in the adjacency matrix is lower than 1%.
Moreover, in the Bernoulli case, the generalization to the
noninteger values of c is straightforward and the numerical
simulations show that the transition from a perfect to
nonperfect match occurs at ¢ = 2.7. More details on
the Bernoulli RNA-like matching will be provided else-
where [18].
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FIG. 3. The average fraction of connected nucleotides in the
ground state secondary structure, f, as a function of the number
of nucleotide types, c. A, the numeric dependence obtained as an
average value for 500 randomly generated sequences of length
n = 200 each; @; the approximation to chains of infinite length;
M, upper analytic estimation (9) (the line connecting the points
are a guide for the eyes); the inset shows the finite-size scaling
used to obtain the data at infinite lengths.
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Summing up, we demonstrate here that alphabets with
different number of letters ¢ are nonequivalent if one
considers the matching problem of long random RNA.
This nonequivalence is tightly coupled to the restrictions
on the morphology of allowed secondary structures.
Indeed, the existence of two regimes (for ¢ = ¢, and ¢ >
¢.) 1s a peculiarity of RNAs and is due to the additional
freedom in the formation of the complex cactuslike sec-
ondary structures typical for messenger RNAs. For the
linear matching problem used in the DNA comparison,
the fraction of nucleotides in the optimal alignment is
less than 1 for any alphabet with ¢ > 1. In our model, the
transition between two regimes occurs at 2 < ¢, < 4. The
exact value of the critical alphabet size should be sensitive
to the microscopic details of the model, and one can
enumerate factors which are neglected in our model
and which could shift the transition point to the right or
to the left from the observed critical value. On the one
hand, the presence of stacking energies and minimal
loop sizes in real RNA leads to the bonds being effectively
formed not by single nucleotides, but by blocks of them,
increasing the effective alphabet size for given c, thus,
decreasing c., in terms of the size of a “‘bare” alphabet.
On the other hand, one would not expect any real-life
random RNA to have a completely random structure
with exactly equal concentrations of letters and no short-
range correlations between them. Any such correlations
reduce the information entropy of the sequence, and,
therefore, lead to the decrease of the effective alphabet
size, and thus push c., to higher values. The exact value
of ¢ is nonuniversal. However, our analysis shows (i)
the existence of two different morphological regimes,
depending on the number of nucleotide types in the
alphabet; and (ii) the fact that this transition point
can plausibly be rather close to 4 (see Note added in
proof).

This particular number, obviously, sounds suggestive
since it is exactly the number of nucleotide types in the
alphabet used in real-world RNAs. The criticality on al-
phabet size, observed only for RNAs thus nicely rhymes
with the modern opinion that the life originates from the
template-directed replication of random RNA molecules
(the so-called “RNA world” hypothesis) [19,20]. Can it be,
indeed, advantageous to have the alphabet of critical or
close-to-critical size? For RNA to have a biological func-
tion it should (i) fold predictably and (ii) form a robust
structure not too sensitive to thermal noise. Short nucleo-
tide alphabets with ¢ < ¢, tend to produce structures
which have many different ground states [see (5), also
compare with similar reasoning for proteins [21,22]]. On
the other hand, long alphabets correspond to loosely bound
ground states with many unpaired nucleotides, which is
disadvantageous in terms of the stability of the structure.
The critical alphabets, thus, seem to be optimal for bio-
logical purpose.
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Note added in proof.—Recently, Ref. [24] was brought
to our attention. The authors of Ref. [24] have considered
numerically the secondary structures of RNAs in a model
somewhat different to ours, and have observed the quali-
tative difference in the degeneration of RNA ground states
for two- and four-letter alphabets. We identify this result
with the transition described here and see it as a confirma-
tion of the robustness of the transition with respect to the
concrete details of the model.
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