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We study theoretically the morphologies of biological tubes affected by various pathologies. When

epithelial cells grow, the negative tension produced by their division provokes a buckling instability.

Several shapes are investigated: varicose, dilated, sinuous, or sausagelike. They are all found in

pathologies of tracheal, renal tubes, or arteries. The final shape depends crucially on the mechanical

parameters of the tissues: Young’s modulus, wall-to-lumen ratio, homeostatic pressure. We argue that

since tissues must be in quasistatic mechanical equilibrium, abnormal shapes convey information as to

what causes the pathology. We calculate a phase diagram of tubular instabilities which could be a helpful

guide for investigating the underlying genetic regulation.

DOI: 10.1103/PhysRevLett.109.018101 PACS numbers: 87.19.R�, 87.17.Pq

Tubular shapes are found ubiquitously in living organ-
isms, from worms to humans and are fundamental struc-
tures of many organs: they convey liquids, gases, or cells
throughout the body. Typical examples are arteries, intes-
tinal tubes, or renal excretory canals. The disruption of
these tubes is at the origin of many pathologies, and
although a large body of work has focused on the molecu-
lar mechanisms underlying each disease and each type of
tube [1–5], little attention has been given to the biome-
chanical aspects of tube stability. Here, we present a gen-
eral framework to describe the instabilities of cellular tubes
and we discuss the possibility to infer the underlying
causes of pathologies by studying the shapes of the abnor-
mally deformed tubes. Indeed, tube instabilities are ob-
served in many different organs but always seem to fall
into a limited number of physiological categories: dilated,
sinuous, or varicose tubes [2,6]. From a physicist’s point of
view, these shapes are reminiscent of classical fluid insta-
bilities. Nevertheless, a key difference with passive sys-
tems is that pathological instabilities result from the
internal activity of the tube. Cell division, or active fluid
pumping, is often the motor of the instability. Thus, a
mechanical description of the tube shapes could bear a
lot of information on the underlying mechanisms of tube
formation and instability.

In the past years, progress has been made in the me-
chanical description of tissues as dividing elastic media
[7–9]. Stresses inside the growing tissues are essential to
determine the final architecture of an organ and conversely,
there are feedback mechanisms of form on growth. We
apply these models, which have been usually used for bulk
tissues, to cylindrical geometries. We consider a wide
variety of epithelial tubes that all share key features. The
tube is composed of a layer of dividing epithelial cells,
which exert pressure on the surrounding medium, and an
elastic basement membrane which provides mechanical

stability. A softer connective tissue, which we model as
an infinite, viscoelastic material, is surrounding the tube.
This simple description suggests a competition between

several forces. The fluid-tube interface has a tension and
can undergo a Rayleigh-Plateau-like instability [10], like a
cylindrical fluid jet breaking into drops. However, the tube
is elastic, and can resist deformation as discussed for
passive lipid tubes [11]. We wish to add active effects:
epithelial cells grow (sometimes at an uncontrolled rate),
and the tube can buckle under the load induced by growth.
Cell divisions are driving an increase of the surface area of
the tube that can be described by a uniform negative
surface tension. As noted in [7], large enough mechanical
feedback leads to a spatially uniform growth. We make this
assumption here, given the regularity of the patterns ob-
served on tubes. Tubes can also dilate because of an excess
uniform fluid pressure. We successively investigate the
morphologies sketched on Fig. 1. The Young’s modulus

FIG. 1 (color online). Left: Sketch of our model for biological
tubes. A single layer of epithelial cells rests on an elastic
membrane (drawn on the left in light blue), surrounded by soft
connective tissue (not drawn). Right: Different tube configura-
tions: (a) reference, (b) varicose/pearling, (c) dilated, (d) sinuous
(e) sausagelike. (b) and (e) have the same symmetry, but corre-
spond to different instabilities, as described in the text.
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Et of biological tubes, such as arteries [12], is of the order
of 104–106 Pa, which is stiff compared with the surround-
ing tissues. The reference state is a tube of infinite length
and radius r0. We first discuss a peristaltic perturbation
(varicose) with cylindrical symmetry. The displacements
in the direction z along the tube and the radial direction r
are denoted by uzðzÞ and urðzÞ, respectively. The forces
involved in the tube deformation can be derived from the
following effective energy [13]:

Eel

2�r0
¼ Eth

2

Z
ðe2z þ e2� þ 2�eze�Þdz

þ K
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where � ¼ 1=2 is the Poisson ratio, and the strain compo-
nents are defined as
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where the prime denotes a derivative with respect to z. The
first term is the stretching elastic energy of the tube. We use
the classical Föppl–von Kármán approximation [13], ne-
glecting u02z , but we keep the nonlinear term ðurr0Þ2 that is

relevant for large uniform dilations of the tube. The second
term is the layer bending energy where C is the local

curvature and K ¼ Eth
3

12ð1��2Þ is the bending modulus. A

key difference with Ref. [14] is that we do not assume
that the outer surface of the cylinder is fixed. The case of
arteries is complicated by the presence of smooth muscles
and anisotropy but as we wish to capture the essential
physics, we restrain ourselves to this simple nonlinear
and isotropic elastic theory. Tension and pressure forces
drive the deformation and lead to an additional effective
energy

Ea ¼
Z
f2��½r0 þ urðzÞ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u0rðzÞ2

q

� ��P½r0 þ urðzÞ�2gdz; (3)

where � is the effective tension, which contains a negative
contribution due to cell division and which can therefore be
positive or negative. �P is an excess pressure inside the
tube. We first investigate a deformation of the tube to a
radius urðzÞ ¼ r0½R0 � 1þ A cosðkzÞ� which includes
both a uniform dilation to a radius R0r0 and a varicose
deformation of amplitude A � 1 (see Supplemental
Material [15] for details). We first discuss the effect of
negative surface tension, assuming that the excess pressure
is small, �Pr0 � j�jðh=r0Þ2. Compared with the classical
Rayleigh-Plateau instability, the wavelength observed
in vivo is small, close to the value of the tube radius
[2,6,16]. We propose that this varicose instability is due
to a buckling of the tube induced by the homeostatic
pressure of the dividing epithelial cells. This hypothesis
has biological grounds for hepatic arteries, since varicoses

are associated with fibromuscular dysplasia [16–18] or
polycystic disorders in renal canals [19].
In the following, we assume that the value of the tension

is such that h2

r2
0

� j�j
Eth

� 1, which seems to be the case for

reasonable values of the parameters: the tubes that we

study are such that h2

r20
� 0:01, and as discussed below,

j�j
Eth

� 0:1. The minimization of the energy with respect to

R0 leads to R0 ¼ 1þ j�j
Eth

’ 1. In this limit, there is a

bifurcation from tubular to varicose states for

j�j> �p ¼ Eth
hffiffiffi
3

p
r0

(4)

at a wavelength �p ¼ 2�r0½ 1
1��2

ðh= ffiffiffiffiffiffi
12

p
r0Þ�1=2. The finite

elasticity of the surrounding medium does not change
these equations as long as its modulus Es is such that
Esr0 � Eth, which is the case here. We have performed
a numerical minimization of the total effective energy
leading to the shape of a tube with a varicose instability
shown in Fig. 2. For large arteries such as the common
hepatic artery, the wall-to-lumen ratio is approximately
h
r0
¼ 0:1, so that �p � 1:23r0. Strikingly, clinical studies

[17] confirm that the wavelength of the pattern is propor-
tional to the radius of the artery, with a very close coeffi-
cient of 1.3, in contradiction to analyses based on the
Rayleigh-Plateau instability [20].
Away from the bifurcation point, there is a weak varia-

tion of the wavelength, which is compatible with the
biological variability. This explains why the same range
of wavelengths is always observed. Since the wavelength is
of the order of the tube radius, we need not consider
instabilities in the section plane of the tube, studied in
Ref. [21] that becomes relevant for much thinner tube
walls. The negative tension exerted by the cells is linked
to the homeostatic pressure, � � �Phh [22]. Pressure
measurements for tumors or dysplasia give values in the
range of Ph ¼ 104 Pa [23]. Taking Et ¼ 105 Pa, the criti-
cal tension �p � 7� 103h is compatible with a buckling

induced by the dividing cells.

FIG. 2 (color online). Comparison between the shapes ob-
tained from buckling theory and in vivo data. (a) A common
hepatic artery displaying varicosities [16]. (b) A drosophila
tracheal tube displaying sinuous mutation [32], �s � 5r0.
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The tubular canals of the kidney in polycystic diseases
lose their stability, giving rise to a variety of patterns: string
of small pearls, large convolutions, or huge spheric cysts
that can invade the entire organ [6,24]. Three mains factors
[19] have been identified: increase in basement membrane
compliance, uncontrolled division of the epithelial cells
forming the tubewall, and disorders in ions pumps, causing
excess water to be pumped in the canals. In our description,
this relates respectively to a decrease in Et, an increase in
Ph, and an increase in �P. The excretory canal of
Caenorhabditis elegans is often used as a model to study
these diseases. Although the tube is different in nature [25]
(a single, elongated cell invaginates to form a tube which
spans its entire length), it can be described by similar
equations: there is a bending energy associated to mem-
brane deformation, a surrounding elastic medium prevents
stretching, the tube can grow because of excess lipid
transport (analogous to negative surface tension), and flows
can be driven by hydrostatic pressure gradients. Thus, in
order to incorporate the effect of pressure gradients, we
now consider the opposite limit of dilated tubes, where the
pressure dominates over tension effects, �Pr0 �
j�jðh=r0Þ2. The equilibrium radius is such that the elastic
deformation equilibrates the excess pressure:

R0 ¼
�
1þ 2

�P

Et

r0
h

�
1=2

: (5)

The physical picture of the varicose instability is not
modified greatly by considering the effect of an excess
pressure. The threshold tension remains of the same order,
and the characteristic undulation wavelength is slightly

reduced: �p ¼ �pð�P ¼ 0Þð1þ 5�Pr0=3EthÞ�1=4.

We then turn to sinuous oscillations of the entire tube.
The classical Euler buckling instability of an elastic
column under compression occurs at a wavelength which
is the system size, in the absence of any surrounding
elastic medium. However, in an elastic medium, buckling
occurs at a finite wavelength. We have shown recently
that this instability can be invoked to describe the mor-
phology of the intestine [26].

We call Et and Es the Young’s moduli of the tube and
surrounding elastic medium, respectively, keeping in
mind that Et � Es. We denote the deformation of the
tube by hðzÞ ¼ B cosðkzÞ. The curvature modulus of a
hollow elastic tube is K ¼ �Etr

3
0h, the force exerted by

the growing tube is f ¼ 2�j�jr0, and the elastic force
exerted by the surrounding medium is proportional to the

deformation with a coefficient � ¼ 2�
1þ�

Es

logð�=r0Þ � 2Es

(see Supplemental Material[15]). The threshold force of

the sinuous instability is f ¼ 2
ffiffiffiffiffiffiffiffi
K�

p
; thus, the critical

tension for buckling is

j�j> �s � 0:8
ffiffiffiffiffiffiffiffi
r0h

p ffiffiffiffiffiffiffiffiffiffi
EsEt

p
: (6)

The wavelength of the instability is �s ¼ 2�r0ð h
2r0

Et

Es
Þ1=4.

A rough estimate leads to �s � 5–10r0, in agreement

with observations of degenerate excretory canals in C.
elegans [6], or of the tracheal system in drosophila ([2]
and Fig. 2).
We now compare sinuous deformations, which occur for

cell tensions larger than �s given by Eq. (6), with varicose
deformations with a threshold �p given by Eq. (4). The

preferred morphology depends on the value of the elastic

ratio r ¼ Esr
3
0

Eth
3 . If the substrate is very soft or the tube is very

hard, the sinuous morphology is expected, since in that
case, it requires a smaller tension. Conversely, if h

r0
is very

small, the varicose instability is expected. Physically, this
is due to the fact that a tube with a larger radius costs
more energy to bend than a tube with larger thickness: its
curvature modulus varies as the cube of the radius and as
the first power of thickness. For a typical tube, h

r0
¼ 0:1,

and Et ¼ 105 Pa, the critical substrate rigidity separating
both morphologies is Es ¼ 102 Pa. This analysis is impor-
tant since a loss of tubular rigidity is one of the causes of
cystic diseases. The situation is much more complex if the
substrate is viscoelastic. Over long time scales, sinuous
deformations are always expected, but can be kinetically
constrained. A detailed discussion goes beyond the scope
of this Letter [27].
In the region where both instabilities can be observed, it

is necessary to compare the energies of the two morphol-
ogies. The results are displayed on a stability diagram in
Fig. 3. We plot in thick green the transition line between the
two instabilities, in the vicinity of the critical point.

FIG. 3 (color online). Stability diagram of all possible con-
figurations of a tube, depending on the relevant parameters. The
vertical axis is the ratio of the moduli of the surrounding tissue to
the tube. The horizontal axis is the ratio of the tension, negative
or positive, to the elasticity of the tube. Thin lines (in light red)
represent the transition to an instability. The thick line (in dark
green) separates stability domains of the varicose and sinuous
patterns.
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The drosophila tracheal system would be a good candi-
date to test the theory. It has been widely studied as a model
of tube size regulation and the deletion of several genes
causes various pathologies. Specifically, mutants lacking
the Sinuous or Varicose genes display sinuous [28] and
varicose morphologies [29], respectively. Although we do
not have a good understanding of their roles, it is known
that they are required in cell-cell junctions (associated to
the rigidity of the tube) and that they have a role in
controlling growth. We now show how our phase diagram
could guide further experiments. The modulus of the nor-
mal tracheal wall was inferred from experiments to be
around 20 kPa [30], and h

r0
� 0:2. Although the mechanical

properties of the tracheal connective tissue have not been
specifically studied, the expected order of magnitude of its
modulus is Es � 100 Pa. The relevant elastic ratio is there-

fore
Esr

3
0

Eth
3 ¼ 0:6< 1, so that sinuous instabilities are ex-

pected. Nevertheless, disturbing junctions lowers the
rigidity of the tube, and a threefold decrease in Et would
favor the varicose instability. We therefore suggest that
more emphasis should be put on measuring the influence
of individual genes on the mechanical properties of cellular
tubes.

The last situation is a tube in the absence of any dyspla-
sia of the cell wall. The tension is then positive and we
expect either a stable tube, or a classical Rayleigh-Plateau
instability of an elastic cylinder. This is slightly different
from the situation encountered in membrane tubes [11],
since the fluid cylinder is surrounded by an elastic shell.

We study a perturbation urðzÞ¼r0½ðR0�1ÞþCcosðkzÞ�.
The situation that we wish to discuss does not involve
any cell growth, and the instability thus occurs on a time
scale small enough that volume conservation is a reason-

able assumption. This imposes that R2
0 � 1 ¼ � C2

2 .

Minimizing the energy with respect to C yields a finite
value of A only for a tension larger than the critical value

�r ¼ Eth
1��2

1�q2
, where q ¼ kr0 (see Supplemental Material

[15]). Below this critical value of the tension, the cylinder
is stable. The instability occurs at the longest wavelength
mode q ! 0. Determining the equilibrium wavelength of
the pattern in the general case requires a nonlinear analysis,
which is beyond the scope of this Letter. Nevertheless, if
the amplitude of the perturbation approaches the radius of
the tube, disconnected pearls are obtained and the most
unstable wavelength can be found by studying the dynam-
ics of the perturbation uz. The continuity equation and a
Poiseuille approximation for the flow lead at lowest order

to:
@uz
@t ¼ r40=ð16�Þ@2zP, where � the fluid viscosity. The

hydrostatic pressure P is calculated from the force-balance
equation on the membrane P ¼ 1=r0½�Cð�q2 þ 1Þ �
Ethð1� �2ÞC� cosðqz=r0Þ. The most unstable wave vector

is then q2r ¼ ��Ethð1��2Þ
2� . The Rayleigh instability has been

invoked to explain the sausagelike pattern observed on
some arteries in Ref. [20]. It has been shown [31] that a

very soft elastic cylinder can undergo a classical Rayleigh-
Plateau instability. Testing the case of hollow elastic tubes
in the same fashion could be an experimental confirmation
to our theory. As expected, if �=Eth � 1, the most un-
stable wave vector converges to the wave vector of the
classical Rayleigh-Plateau instability qRP ¼ 1ffiffi

2
p [10].

The main result of this Letter is the stability diagram of
Fig. 3 presenting the stabilities of most morphologies
found in cellular tubes, depending of their mechanical
properties. The buckling theory is in good quantitative
agreement with the in vivo data. We have here deliberately
used simple models for the mechanics of the tubes, to
emphasize the generality of our results, and the relevance
of a few dimensionless ratios to predict the observed
instabilities. Most importantly, we want to stress the
fact that tissue shapes could turn out to be a meaningful
criterion to detect the causes of specific pathologies. For
example, in the case of excretory kidney canals, dysplasia
leads to a different instability than fluid accumulation.
More work is clearly needed in each specific case, but
we do not expect the basic physics presented in this
Letter to be modified.
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Jülicher, Proc. Natl. Acad. Sci. U.S.A. 107, 20 863 (2010).
[10] Lord Rayleigh, Philos. Mag. 34, 145 (1892).
[11] R. Bar-Ziv and E. Moses, Phys. Rev. Lett. 73, 1392 (1994).
[12] S. Laurent, X. Girerd, J. J. Mourad, P. Lacolley, L. Beck, P.

Boutouyrie, J. P. Mignot, and M. Safar, Arterioscler.

Thromb. Vasc. Biol. 14, 1223 (1994).
[13] S. Timoshenko and J.M. Gere, Theory of Elastic Stability

(McGraw-Hill, New York, 1961), 2nd ed.
[14] P. Ciarletta and M. Ben Amar, J. Mech. Phys. Solids 60,

525 (2012).
[15] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.109.018101 for the

detailed calculation of thresholds, amplitudes, and ener-

gies of the different types of deformations.
[16] B. Peynircioglu and B. E. Cil, Cardiovasc. Intervent.

Radiol. 31 (Suppl. 2), S38 (2008).
[17] P. F. J. New, AJR Am. J. Roentgenol. 97, 488 (1966).

PRL 109, 018101 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending
6 JULY 2012

018101-4

http://dx.doi.org/10.1016/S1534-5807(02)00410-0
http://dx.doi.org/10.1016/S0070-2153(09)89006-6
http://dx.doi.org/10.1016/S0070-2153(09)89006-6
http://dx.doi.org/10.1016/j.ydbio.2009.09.024
http://dx.doi.org/10.1016/S0092-8674(02)01283-7
http://dx.doi.org/10.1006/dbio.1999.9398
http://dx.doi.org/10.1073/pnas.0404782102
http://dx.doi.org/10.1073/pnas.0404782102
http://dx.doi.org/10.1242/dev.024166
http://dx.doi.org/10.1242/dev.024166
http://dx.doi.org/10.1073/pnas.1011086107
http://dx.doi.org/10.1103/PhysRevLett.73.1392
http://dx.doi.org/10.1161/01.ATV.14.7.1223
http://dx.doi.org/10.1161/01.ATV.14.7.1223
http://dx.doi.org/10.1016/j.jmps.2011.11.004
http://dx.doi.org/10.1016/j.jmps.2011.11.004
http://link.aps.org/supplemental/10.1103/PhysRevLett.109.018101
http://link.aps.org/supplemental/10.1103/PhysRevLett.109.018101
http://dx.doi.org/10.1007/s00270-008-9316-6
http://dx.doi.org/10.1007/s00270-008-9316-6


[18] P.-F. Plouin, J. Perdu, A. La Batide-Alanore, P.
Boutouyrie, A.-P. Gimenez-Roqueplo and X.
Jeunemaitre, Orphanet J. Rare Dis. 2, 28 (2007).

[19] L.W. Welling, in The Cystic Kidney, edited by K.D.
Gardner and J. Bernstein (Kluwer, Amsterdam, 1990),
p. 99.

[20] P. Alstrøm, V.M. Eguı́luz, M. Colding-Jørgensen, F.
Gustafsson, and N.-H. Holstein-Rathlou, Phys. Rev. Lett.
82, 1995 (1999).

[21] J. Yin, Z. Cao, C. Li, I. Sheinman, and X. Chen, Proc.
Natl. Acad. Sci. U.S.A. 105, 19 132 (2008).

[22] M. Basan, T. Risler, J.F. Joanny, X. SastreGarau, and J.
Prost, HFSP J. 3, 265 (2009).

[23] G. Helmlinger, F. Yuan, M. Dellian, and R.K. Jain, Nature
Med. 3, 177 (1997).

[24] A. P. Evan and J. A. McAteerin, in The Cystic Kidney
(Ref. [19]), p. 2142.

[25] F. K. Nelson, P. S. Albert, and D. L. Riddle, J. Ultrastruct.
Res. 82, 156 (1983).

[26] E. Hannezo, J. Prost, and J. F. Joanny, Phys. Rev. Lett.
107, 078104 (2011).

[27] R. Huang, J. Mech. Phys. Solids 53, 63
(2005).

[28] V.M. Wu, J. Schulte, A. Hirschi, U. Tepass, and G. J.
Beitel, J. Cell Biol. 164, 313 (2004).

[29] V.M. Wu, M.H. Yu, R. Paik, S. Banerjee, Z. Liang, S.M.
Paul, M.A. Bhat, and G. J. Beitel, Development
(Cambridge, U.K.) 134, 999 (2007).

[30] A.M. Cheshire, B. E. Kerman, W. R. Zipfel, A.A. Spector,
and D. J. Andrew, Dev. Dyn. 237, 2874 (2008).

[31] S. Mora, T. Phou, J.-M. Fromental, L.M. Pismen, and Y.
Pomeau, Phys. Rev. Lett. 105, 214301 (2010).

[32] P. Laprise, S.M. Paul, J. Boulanger, R.M. Robbins, G. J.
Beitel, and U. Tepass, Curr. Biol. 20, 55 (2010).

PRL 109, 018101 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending
6 JULY 2012

018101-5

http://dx.doi.org/10.1186/1750-1172-2-28
http://dx.doi.org/10.1103/PhysRevLett.82.1995
http://dx.doi.org/10.1103/PhysRevLett.82.1995
http://dx.doi.org/10.1073/pnas.0810443105
http://dx.doi.org/10.1073/pnas.0810443105
http://dx.doi.org/10.2976/1.3086732
http://dx.doi.org/10.1038/nm0297-177
http://dx.doi.org/10.1038/nm0297-177
http://dx.doi.org/10.1103/PhysRevLett.107.078104
http://dx.doi.org/10.1103/PhysRevLett.107.078104
http://dx.doi.org/10.1016/j.jmps.2004.06.007
http://dx.doi.org/10.1016/j.jmps.2004.06.007
http://dx.doi.org/10.1083/jcb.200309134
http://dx.doi.org/10.1242/dev.02785
http://dx.doi.org/10.1242/dev.02785
http://dx.doi.org/10.1002/dvdy.21709
http://dx.doi.org/10.1103/PhysRevLett.105.214301
http://dx.doi.org/10.1016/j.cub.2009.11.017

