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An important and incompletely answered question is whether a closed quantum system of many

interacting particles can be localized by disorder. The time evolution of simple (unentangled) initial states

is studied numerically for a system of interacting spinless fermions in one dimension described by the

random-field XXZHamiltonian. Interactions induce a dramatic change in the propagation of entanglement

and a smaller change in the propagation of particles. For even weak interactions, when the system is

thought to be in a many-body localized phase, entanglement shows neither localized nor diffusive

behavior but grows without limit in an infinite system: interactions act as a singular perturbation on

the localized state with no interactions. The significance for proposed atomic experiments is that local

measurements will show a large but nonthermal entropy in the many-body localized state. This entropy

develops slowly (approximately logarithmically) over a diverging time scale as in glassy systems.
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One of the most remarkable predictions of quantum
mechanics is that an arbitrarily weak random potential is
sufficient to localize all energy eigenstates of a single
particle moving in one dimension [1,2]. In experiments
on electronic systems, observation of localization is lim-
ited to low temperatures because the interaction of an
electron with its environment results in a loss of quantum
coherence and a crossover to classical transport. Recent
work has proposed that, if there are electron-electron
interactions but the electronic system is isolated from
other degrees of freedom (such as phonons), there can
be a ‘‘many-body localization transition’’ even in a one-
dimensional system for which all the single-particle states
are localized [3–8].

Two important developments may enable progress on
many-body localization beyond past efforts using analyti-
cal perturbation theory. The first is that numerical methods
like matrix-product-state based methods and large scale
exact diagonalizations enable studies of some, not all,
important quantities in large systems. The second is that
progress in creating atomic systems where interactions
between particles are strong but the overall many-atom
system is highly phase coherent [9] suggests that this
many-body localization transition may be observable in
experiments [10,11]. Note that many-body localization is
connected to the problem of thermalization in closed quan-
tum systems as a localized system does not thermalize.

The goal of the present Letter is to show that the many-
body localized phase differs qualitatively, even for weak
interactions, from the conventional, noninteracting local-
ized phase. The evolution of two quantities studied, the
entanglement entropy and particle number fluctuations,
show logarithmically slow evolution more characteristic
of a glassy phase; however, the long-term behavior of these

quantities is quite different. The growth of the entangle-
ment entropy has previously been observed [12,13] to
show roughly logarithmic evolution for smaller systems
and stronger interactions. We seek, here, to study this
behavior systematically over a wide range of time scales
(up to t � 109J�1

? ), showing that the logarithmic growth

begins for arbitrarily weak interactions. We show that the
entanglement growth does not saturate in the thermody-
namic limit, and obtain additional quantities that distin-
guish among possible mechanisms. Further discussion of
our conclusions appears after the model, methods, and
numerical results are presented.
Model system.—One-dimensional (1D) s ¼ 1

2 spin chains

are a natural place to look for many-body localization [4] as
they are equivalent to 1D spinless lattice fermions. To start,
consider the XX model with random z directed magnetic
fields so that the total magnetization Sz is conserved:

H0 ¼ J?
X

i

ðSxi Sxiþ1 þ Syi S
y
iþ1Þ þ

X

i

hiS
z
i : (1)

Here, the fields hi are drawn independently from the interval
[� �, �]. The eigenstates are equivalent via the Jordan-
Wigner transformation to Slater determinants of free fermi-
ons with nearest-neighbor hopping and random on-site
potentials; particle number in the fermionic representation
is related to Sz in the spin representation, so the z directed
magnetic field is essentially a random chemical potential.
Now every single-fermion state is localized by any �> 0,
and the dynamics of this spin Hamiltonian are localized
as well: a local disturbance at time t ¼ 0 propagates only
to some finite distance (the localization length) as t ! 1. As
an example, consider the evolution of a randomly chosen Sz

basis state. The coupling J? allows ‘‘particles’’ (up spins) to
move, and entanglement entropy to develop, between two
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subregions A and B. But the total amount of entanglement
entropy generated remains finite as t ! 1 (Fig. 1), and the
fluctuations of particle number eventually saturate as well
(see below). The entanglement entropy for the pure state
of the whole system is defined as the von Neumann entropy
S ¼ �tr�A log�A ¼ �tr�B log�B of the reduced density
matrix of either subsystem. We always form the two biparti-
tions by dividing the system at the center bond.

The type of evolution considered here can be viewed as a
‘‘global quench’’ in the language of Calabrese and Cardy
[14] as the initial state is the ground state of an artificial
Hamiltonian with local fields. Evolution from an initial
product state with zero entanglement can be studied effi-
ciently via time-dependent matrix product state methods
until a time where the entanglement becomes too large for
a fixed matrix dimension. Since entanglement cannot
increase purely by local operations within each subsystem,
its growth results only from propagation across the

subsystem boundary, even though there is no conserved
current of entanglement.
The first question we seek to answer is whether there is

any qualitatively different behavior of physical quantities
when a small interaction

Hint ¼ Jz
X

i

Szi S
z
iþ1 (2)

is added. With Heisenberg couplings between the spins
(Jz ¼ J?), the model is believed to have a dynamical tran-
sition as a function of the dimensionless disorder strength
�=Jz [4,5,7]. This transition is present in generic eigenstates
of the system and hence exists at infinite temperature at
some nonzero �. The spin conductivity, or equivalently
particle conductivity after the Jordan-Wigner transforma-
tion, is zero in the many-body localized phase and nonzero
for small enough�=Jz. However, with exact diagonalization
the system size is so limited that it has not been possible to
estimate the location in the thermodynamic limit of the
transition of eigenstates or conductivities.
We find that entanglement growth shows a qualitative

change inbehavior at infinitesimalJz. Instead of the expected
behavior that a small interaction strength leads to a small
delay in saturation and a small increase infinal entanglement,
we find that the increase of entanglement continues to times
orders of magnitude larger than the initial localization time
in the Jz ¼ 0 case (Fig. 1). This slowgrowth of entanglement
is consistent with prior observations for shorter times and
larger interactions Jz ¼ 0:5J? and Jz ¼ J? [12,13],
although the saturation behavior was unclear. Note that ob-
serving a sudden effect of turning on interactions requires
large systems, as a small change in the Hamiltonian applied
to the same initial state will take a long time to affect the
behavior significantly. We next explain briefly the methods
enabling large systems to be studied.
Numerical methodology.—To simulate the quench, we

use the time evolving block decimation (TEBD) [15,16]
method which provides an efficient method to perform a
time evolution of quantum states, jc ðtÞi ¼ UðtÞjc ð0Þi, in
one-dimensional systems. The TEBD algorithm can be seen
as a descendant of the density matrix renormalization group
[17] method and is based on a matrix product state (MPS)
representation [18,19] of the wave functions. We use a
second-order Trotter decomposition of the short time propa-
gator Uð�tÞ ¼ expð�i�tHÞ into a product of term which
acts only on two nearest-neighbor sites (two-site gates).After
each application, the dimension of the MPS increases. To
avoid an uncontrolled growth of the matrix dimensions,
the MPS is truncated by keeping only the states which have
the largest weight in a Schmidt decomposition.
In order to control the error, we check that the neglected

weight after each step is small (< 10�6). Algorithms of
this type are efficient because they exploit the fact that the
ground-state wave functions are only slightly entangled
which allows for an efficient truncation. Generally the
entanglement grows linearly as a function of time which

FIG. 1 (color online). (a) Entanglement growth after a quench
starting from a site factorized Sz eigenstate for different inter-
action strengths Jz (we consider a bipartition into two half chains
of equal size). All data are for � ¼ 5 and L ¼ 10, except for
Jz ¼ 0:1 where L ¼ 20 is shown for comparison. The inset
shows the same data but with a rescaled time axis and subtracted
Jz ¼ 0 values. (b) Saturation values of the entanglement entropy
as a function of L for different interaction strengths Jz. The inset
shows the approach to saturation.
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allows only the simulation of rather short times. In our
case, however, the entanglement growth is logarithmic and
thus it is possible to perform a time evolution over long
time scales [13].

In order to study the asymptotic (t ! 1) behavior, we
employ exact diagonalization techniques. We diagonalize
the full Hamiltonian and construct UðtÞ which allows us to
access very late times after the quench. Since the Hilbert
space grows exponentially with the system size, we can
only consider rather small systems. All the data in this
paper are obtained by averaging over more than 104 field
configurations fhig starting from a random product state
jc ð0Þi ¼ jm1ijm2i . . . jmLi, where jmji 2 fj "i; j #ig are

eigenstates of the Szj operators (for the saturation data we

always start from a Néel state to reduce noise—the data are
qualitatively the same for a random initial state).

Saturation behavior and entropy.—In Fig. 1 upper panel,
we plot the time evolution of the half-chain entanglement
entropy. The initial quick rise of the entanglement till time
J?t� 1 corresponds to expansion of wave packets to a size
of the order of the localization length. This rise is inde-
pendent of the interaction strength Jz. After this initial
expansion, the entanglement saturates in the noninteracting
case but increases logarithmically for any nonzero interac-
tion strength. The time at which the logarithmic growth
starts is Jzt� 1, and all curves for different interacting
strengths roughly collapse on a single curve when plotted
against Jzt (see inset). In the case of Jz=J? ¼ 0:1 we have
plotted the entanglement for both L ¼ 10 and L ¼ 20.
While absolute value of the entanglement differs slightly,
the two curves are indistinguishable after subtracting the
noninteracting value (inset), suggesting that for the entan-
glement at the time scales explored, finite size effects
are small.

In an infinite system, we expect the logarithmic growth
of the entanglement to continue indefinitely. In a finite
system, in contrast, it will saturate at late times at some
value S1. The lower panel in Fig. 1 shows the approach to
saturation and the system size dependence of this satura-
tion value, as obtained by exact diagonalization. In the
noninteracting case, this value is independent of system
size as expected if the localization length � � L. In the
presence of interaction the saturation value is independent
of the interaction strength (we have checked that the small
difference between the curves at large L goes away as the
saturation time is increased) and follows a volume law. The
time tsat at which the entanglement entropy saturates is
consistent with the scaling logtsat � L. For small sizes the
result is roughly consistent with Ref. [12], although going
to longer times we find that the saturation follows a volume
law rather than being logarithmic in subsystem size as
conjectured there. Such logarithmic dependence occurs
at certain random-singlet quantum critical points in one
dimension [20], but the present system is not critical
by standard definitions. Recent work observes a slower

loglogt growth of entanglement in a quench to the
random-singlet critical point of a random-field Ising
chain [21].
The observation of a volume law for the saturation

entanglement entropy suggests at first glance that the sys-
tem may be partially thermalized, as a finite entanglement
entropy per site is consistent with a thermal entropy.
However, the saturation value of the entanglement entropy
per site is much lower than the infinite temperature thermal
value associated with 2 states per site. Since, as shown
below, particle number propagates much less than entan-
glement and may well be localized, the entanglement
entropy at saturation may result from an incomplete ther-
malization where the system locally equilibrates among a
restricted ensemble with particular values of particle num-
ber, energy, and other conserved quantities. This would be
a many-body-localized version of the generalized Gibbs
ensemble describing thermalization in some systems with-
out disorder.
The time evolution of the half-chain particle number

fluctuations, i.e., the variance of the total spin on half the
chain, is plotted in the upper panel of Fig. 2. The behavior
of the particle number fluctuations is qualitatively different
than the entanglement entropy. Interactions do enhance the
particle number fluctuations, but while there are signs of a
logarithmic growth as for the entanglement, this growth
slows down with time. The saturation values, similarly, are
interaction dependent and only fractionally larger than in
the noninteracting case. This does not seem to be a case of
the system not having reached saturation, as increasing the
saturation time by two orders of magnitude has a negligible
effect on the saturation values. The half-chain energy
variance behaves in a manner similar to the particle vari-
ance (data not shown). It would therefore seem that particle
transport is not fully ergodic, consistent with a many-body
localized phase.
Conclusions.—Our results are consistent with a phase

diagram consisting of a conventionally localized phase at
zero interaction, a quasilocalized phase for moderate
interactions, and a delocalized phase when interactions
dominate disorder. We use the term ‘‘quasilocalized’’ to
describe zero conductivity (particles are either localized
or subdiffusive) while other quantities such as entangle-
ment show continued evolution for long times. The en-
tanglement entropy difference between Anderson and
many-body localized phases will appear in any local
measurement of entropy, since all local measurements
on a subsystem are entirely determined by the reduced
density matrix of that subsystem [22].
It is possible that the particle and energy variances are not

actually saturating but increase without limit, which cannot
strictly be ruled out from our data. This would still be
consistent with zero conductivity if, for example, the con-
tinuing increase results from subdiffusive motion of parti-
cles; alternately there could be diffusion at unobservably
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long times and no many-body localized phase. The quanti-
ties studied here by matrix-product-state methods are not
directly comparable to quantities previously studied by
exact diagonalization, e.g., the level statistics of eigenstates
[4,12] or correlations in a single eigenstate [7], and there
could be a sharp transition as a function of � in such
quantities while the real-time evolution studied here is
insensitive to that transition. However, if this is the case, it
means that experimentsmust be carefully designed to detect
the transition as the dynamics of a simple initial state with
strong disorder are characterized better by glassy dynamics
than ordinary localization.

If the ultimate dynamics on long time scales is dephased
because one part of the system sees the remainder as a
‘‘bath’’, then classical dynamics is appropriate, and in
classical physics it is well known that quenched random
systems need not be diffusive, especially in 1D. One model
for slow dynamics was introduced by Sinai [23], who

showed that 1D Brownian motion is modified by a static
Gaussian-correlated random force F,

dx

dt
¼ �ðtÞ þ FðxÞ: (3)

The displacement R ¼ ffiffiffiffiffiffiffiffihx2ip
of a particle from its initial

location scales asymptotically as R� log2ðtÞ rather than
R� ffiffi

t
p

as in ordinary diffusion. The scaling of R can be
obtained from a simple estimate of the time required to
cross an occasional region of unfavorable potential [24].
Another possibly relevant classical model follows from
considering classical rate equations with a broad distribu-
tion of rates [25], which leads to logarithmic diffusion
R� logt for intermediate times before ultimately crossing
over to diffusion.
In conclusion, the many-body localized phase of the

random-field XXZ Hamiltonian is fundamentally different
in at least one measurable aspect, the dynamics of entan-
glement, from noninteracting Anderson localization. The
entanglement increases slowly until a saturation time
scale, which diverges in the infinite system. Two important
questions for future work are a full characterization of
other dynamical properties of this phase, including
whether particles and energy are fully localized or propa-
gate subdiffusively, and an understanding of how these
properties connect to the phase transition to a delocalized
phase. Our results imply that local measurements starting
from some initial states will show a large but non-thermal
entropy in the many-body localized state in the presence of
interaction, which is of particular relevance for experi-
ments on atoms in disordered optical lattices [26,27].
The authors acknowledge conversations with P.
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