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Fixed-energy sandpiles with stochastic update rules are known to exhibit a nonequilibrium phase

transition from an active phase into infinitely many absorbing states. Examples include the conserved

Manna model, the conserved lattice gas, and the conserved threshold transfer process. It is believed that the

transitions in these models belong to an autonomous universality class of nonequilibrium phase transitions,

the so-calledManna class. Contrarily, the present numerical study of selected (1þ 1)-dimensional models in

this class suggests that their critical behavior converges to directed percolation after very long time,

questioning the existence of an independent Manna class.
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Self-organized criticality (SOC) was introduced in the
late 1980s as an attempt to explain the ubiquitous variety of
scale-invariant phenomena in nature [1]. Paradigmatic ex-
amples are sandpile models (see, e.g., [2]), where sand is
accumulated on a slow time scale and relaxed in form of
sudden avalanches on a fast time scale. The interplay of
slow driving and fast relaxation combined with dissipation
at the boundaries drives such systems towards a scale-
invariant state without any fine tuning of parameters. As
a hallmark of SOC, one observes power-law distributed
avalanche sizes.

Later it became clear [3,4] that SOC is closely related to
nonequilibrium phase transitions into infinitely many ab-
sorbing states [5]. To make this relation more explicit fixed
energy sandpiles (FES) were introduced, where grains on a
periodic lattice follow the same local toppling rules as the
original sandpile models without any drive or dissipation.
One of the best studied models is the fixed energy version of
the nondeterministic Manna sandpile model [6,7], the dis-
crete conserved Manna model (DCMM). The transition in
this model was found to be different from directed percola-
tion (DP) and other previously known universality classes
[8]. This point of view was bolstered by the discovery that
various other models with conservation laws such as the
conserved lattice gas model (CLG), the conserved threshold
transfer process (CTTP) [9,10], and theMaslov-Zhang sand-
pile [11], exhibit the same type of universal critical behavior,
constituting the so-called Manna class (MC) of absorbing
phase transitions with a conserved field which is considered
today as firmly established [5].

The paradigm of an independent Manna class, however,
has always been overshadowed by several disturbing obser-
vations [12]. The reported estimates for the critical expo-
nents of the MC are quite scattered and show anomalous
scaling behavior. For example, the decay of activity from a
homogeneously active state, �aðtÞ � t��, and of the sur-
vival probability of an avalanche starting with a single seed
PsðtÞ � t�� are characterized by different critical exponents

� � �. On the other hand one finds that the order parameter
exponent � and the survival probability exponent �0 are
equal within error bars [13]. Moreover, the upper critical
dimension dc ¼ 4 and the mean-field exponents for the MC
[13] are same as in DP. In addition, the corresponding SOC
models are known to be unstable against specific perturba-
tions and generically flow to DP [14].
In this Letter, we suggest that an independent Manna

class does not exist. Instead, we find that the apparent
nonDP behavior, which was seen in many numerical stud-
ies, is a transient phenomenon, meaning that all models of
this type are expected to show a DP critical behavior after
very long time.
Discrete Model.—To support this hypothesis, we first

revisit the DCMM, showing that its critical behavior de-
pends crucially on correlations in the initial state. We restrict
our study to (1þ 1) dimensions, where possible discrep-
ancies between the MC and DP are expected to be most
pronounced. The DCMM is defined on a chain with L
sites and periodic boundary conditions, where each site
j ¼ 1; 2; . . . ; L is occupied by nj particles. Sites with
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FIG. 1 (color online). DCMM: (a) Typical time evolution,
where single and active sites are marked by black (dark) and
red (light) pixels, respectively. (b) Decay in the supercritical
phase for random initial conditions (dotted lines) and natural
initial states (solid lines).
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nj � 2 particles are declared as active, labeled by a flag

sj ¼ 1, while empty and singly occupied sites are inactive

(sj ¼ 0). The model evolves by parallel updates, redistrib-

uting particles at active sites independently among randomly
selected nearest-neighbor sites so that the total number of
particles N ¼ P

jnj is conserved [see Fig. 1(a)]. The

DCMM exhibits a continuous transition from an active
phase into infinitely many absorbing states controlled by
the average density of particles� ¼ N=L in the initial state,
where the density of active sites �a ¼ hsii plays the role of
an order parameter.

Random initial conditions.—Studying homogeneously
active initial states with a given density �, most authors
used to distribute N particles randomly on the chain. In the
active phase�>�c one expects the density of active sites
�aðtÞ to cross over monotonically from an algebraic decay
to a constant value. Surprisingly, we find that �aðtÞ first
reaches a minimum, then increases and finally saturates at
a stationary value [see Fig. 1(b)]. Such a nonmonotonic
undershooting is quite unusual for absorbing phase tran-
sitions. Moreover, the curves cannot be collapsed onto a
single one, indicating the presence of several time
scales [12]. We believe that this circumstance is the origin
of various numerical inconsistencies reported in the
literature.

Explaining the undershooting.—As demonstrated in
Fig. 1(a), the dynamics of active sites takes place on a
heterogeneous background of immobile particles. For ran-
dom initial conditions (IC) this background is highly disor-
dered so that the spreading process is expected to behave
like DPwith spatially quenched disorder [15], slowing down
the decay of �aðtÞ and lowering its value in the active phase.
However, the disorder of the background is not quenched
but gets slowly modified by the process itself. We find that
this feedback gradually homogenizes the background on a
very slow time scale, leading to a subsequent increase of
�aðtÞ. The gradual removal of disorder is visualized in

Fig. 2(a), where we plotted the cumulative sum SðjÞ ¼
ðPj

i¼1 niÞ � Nj=L which measures the excess of particles

to the left of site j compared to the expected average. As can
be seen, the pronounced density fluctuations of the random

initial state (black curve) are gradually leveled out, produc-
ing an almost flat profile (red line) after very long time.
Natural homogeneous initial states.—In the presence of

undershooting, the additional curvature in �aðtÞ can easily
lead to an erroneous estimate of �c and the critical ex-
ponents [12]. As one of our main results, we show that the
observed undershooting in the supercritical phase can be
avoided by preparing natural initial states. Following an
idea introduced earlier in the context of seed simulations
[16], we first let the process run until it becomes stationary
after the undershooting. As diffusion is known to be the
conjugate field in the DCMM [17], we then reactivate the
system by allowing all the particles to diffuse for a single
Monte Carlo sweep (MCS), which restores a high homo-
geneous activity without destroying the natural long-range
correlations in the background. After reactivation we mea-
sure �aðtÞ as usual. As shown in Fig. 1(b), this resolves the
problem of undershooting.
Figure 2(b) shows that the temporal decay of �aðtÞ for

random and natural IC is in fact very different. For the
latter we find the critical point �c ¼ 0:892 36ð3Þ, which
differs significantly from the previously reported estimate
�c ¼ 0:891 99ð5Þ obtained with random IC [9,12]. For
the decay exponent, which was previously estimated by
� ¼ 0:141ð24Þ, we get a much larger value � ¼ 0:159ð3Þ
for natural IC which is in agreement with DP.
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FIG. 2 (color online). DCMM: (a) Cumulative background
density for random initial conditions captured at different simu-
lation times. (b) Decay of the density of active sites for natural
initial conditions on a system with L ¼ 218 sites.
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FIG. 3 (color online). DCMM: (a) Decay of the �aðtÞ with
natural initial conditions and L ¼ 218 sites for �-�c ¼
0:0004; 0:0008; . . . ; 0:1024. Here �c ¼ 0:892 36 is obtained
from Fig. 2(b). (b) Corresponding stationary densities.
(c) Extrapolation of the static exponent �.
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FIG. 4 (color online). DCMM: (a) Spatial correlation function
in the stationary state with system size L ¼ 211. (b) Finite-size
scaling at criticality with natural homogeneous IC for L ¼ 28 to
213 and corresponding data collapse.
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Stationary state.—Figure 3(a) shows the saturation of
�aðtÞ in the supercritical phase using natural initial con-
ditions. As can be seen in panel (b), the stationary density
plotted against � ¼ ���c displays a slight curvature.
Approaching criticality the effective exponent �eff (the
slope between adjacent data points) exhibits a drift from
which we can safely conclude that �< 0:31. Plotting �eff

against �b with a heuristically determined exponent
b ¼ 0:45 in panel (c), the data points seem to follow an
asymptotically straight line, allowing us to extrapolate �eff

visually to criticality. As indicated by the blue arrow, the
result is again compatible with DP. Likewise, by plotting
�aðtÞ=�a against t��k and searching for a data collapse
(not shown here) we estimate �k ¼ 1:75ð5Þ. In addition, we
estimated the exponent �? by measuring the correlation
function Cðr;�Þ ¼ hsjsjþri in the stationary state,

which obeys the scaling form Cðr;�Þ ¼ �2
aGðr��?Þ near

criticality. A data collapse in Fig. 4(a) gives the estimate
�? ¼ 1:095ð5Þ. Both exponents �k and �? are in good

agreement with DP.
Finite-size scaling.—The dynamical exponent z¼�k=�?

can be determined by finite-size simulations at criticality,
where the density of active sites is expected to obey the
scaling form �aðt; LÞ ¼ t��F ð t

LzÞ. Again, a conventional

data collapse in Fig. 4(b) leads to the estimate z ¼ 1:51ð5Þ
which is somewhat smaller than the corresponding DP value
1.58 but larger than previously reported estimates.

Continuous variant of the model.—The discrete dynam-
ics of the DCMM has several shortcomings. On the one
hand, in finite systems the control parameter� is quantized
in steps of 1=L, leading to systematic errors which have not
been taken into account. On the other hand, the background

noise is difficult to characterize because of its telegraphic
nature. For this reason we define a different variant of
the conserved Manna model, where the background is
modeled by a continuous variable. We find that this
continuous conserved Manna model (CCMM) exhibits a
particularly clean DP scaling.
TheCCMMis defined on a one-dimensional latticewithL

sites and periodic boundary conditions, where we associate
with each site j a real-valued variableEj called energy.A site

is declared as active if Ej � 1. In each time step all active

sites are synchronously updated by redistributing the frac-
tions �j and 1� �j of the energy Ej to the two neighboring

sites, where �j 2 ð0; 1Þ are random numbers. Clearly this

update rule conserves the total energyE ¼ P
jEj. Themodel

exhibits an absorbing phase transition when the energy den-
sity e ¼ E=L crosses a certain threshold value ec.
Numerical results for the CCMM.—For randomly dis-

tributed energies the continuous model shows the same
undershooting of �aðtÞ as the discrete model. This can be
avoided by using natural initial states [see Fig. 5(a)].
Searching for the transition point (see inset) we find the
critical energy ec ¼ 0:657 97ð1Þ and the decay exponent
� ¼ 0:1596ð2Þ. Repeating the above analysis in the sta-
tionary state � ¼ e� ec > 0, we find � ¼ 0:277ð18Þ
[solid line in Fig. 5(b)] while farther away from criticality
the local slope increases towards 0.381 (dashed line) com-
patible with earlier results [9]. Moreover, the data collapse
of �aðtÞ=�a against t��k (not shown) gives the estimate
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FIG. 5 (color online). CCMM: (a) Search for the critical point
using natural initial conditions (inset) and saturation in the
supercritical phase in a system with L ¼ 105 sites.
(b) Stationary density of active sites as a function of � ¼ e�
ec. (c)–(d) Data collapses for spatial correlations and finite size
effects analogous to Fig. 4.
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�k ¼ 1:74ð1Þ, while the data collapse for the two-point

correlation function in Fig. 5(c) gives an estimate
�? ¼ 1:096ð4Þ. A finite-size scaling analysis leads to the
dynamical exponent z ¼ 1:52ð1Þ [see Fig. 5(d)]. Both �?
and �k are in good agreement with the corresponding DP

values.
Comparison of scaling functions.—In Fig. 6 we overlay

the data collapses of Figs. 4 and 5 with the appropriately
shifted scaling functions F and G of DP (black dashed
lines) which were determined numerically in a directed
bond percolation process. As can be seen, the curves
coincide almost perfectly for both the CCMM and the
DCMM. A similar coincidence for the off critical scaling
function can be found in the Supplemental Material [12].

Seed simulations.—In seed simulations, we first let the
system evolve at a given �< 0 until it reaches a natural
absorbing configuration [16]. In the discrete (continuous)
model we then choose a random site jwith nj > 0 (Ej > 0)

and transfer a particle (energy portions Ek=2) from ran-
domly chosen site(s) k to the target site j until it becomes
active. This procedure conserves the number of particles
(energy) without destroying the background correlations.
We then measure the mean massM, the mean survival time
T and the mean area S of the generated clusters. In the
stationary state near criticality, these quantities are ex-
pected to scale as

M� j�j��; T � j�j�	; S� j�j�
; (1)

where �¼�?þ�k�2�, 	¼�k��, and 
¼�?þ�k��.
Although we could not reproduce DP exponents in these
scaling laws individually, it turns out that �-independent
ratios of these quantities do exhibit a clean DP scaling. For
example, Eq. (1) implies the relations

S�M1þ�=�; S=T �M�?=�; ST=M� ðS=TÞz: (2)

As shown in Fig. 7, the exponents �=�, �?=�, and z are
estimated by 0.127(7), 0.486(9), and 1.591(20) for DCMM,
and by 0.123(3), 0.476(5), and 1.579(50) for CCMM,
respectively. Using the scaling relations �¼�?þ�k�2�
and �k ¼ �=� these estimates are consistent with those

of Table I and in excellent agreement with the corre-
sponding DP values �=� ¼ 0:1214, �?=� ¼ 0:4816, and
z¼1:5807.

Conclusions.—We have shown that the dynamics of the
conserved Manna model in (1þ 1) dimensions gradually
removes the disorder in the background by itself. As a

consequence, the problem of undershooting can be re-
solved by using homogeneously active initial states with
natural background correlations. This leads to a slightly
different estimate of the critical density and therewith to
different critical exponents which then turn out to be
mostly compatible with those of DP. As shown in the
Supplemental Material [12], analogous results were ob-
tained in other sister models belonging to Manna class,
namely in the (1þ 1)-dimensional CTTP and the CLG on
a ladder. All our findings suggest that the Manna class is
not independent but rather an extension or perturbation of
DP with nontrivial boundary effects [18].
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