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We demonstrate that the three-dimensional Skyrmion, which has remained elusive so far, spontaneously

appears as the ground state of SUð2Þ symmetric Bose-Einstein condensates coupled with a non-Abelian

gauge field. The gauge field is a three-dimensional analogue of the Rashba spin-orbit coupling. Upon

squashing the SOð3Þ symmetric gauge field to one- or two-dimensional shapes, we find that the ground

state continuously undergoes a change from a three-dimensional to a one- or two-dimensional Skyrmion,

which is identified by estimating winding numbers and helicity. All of the emerged Skyrmions are

physically understandable with the concept of the helical modulation in a unified way. These topological

objects might potentially be realizable in two-component Bose-Einstein condensates experimentally.
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Introduction.—The n-dimensional Skyrmions (n � 3),
classified by the n-th homotopy group (�nðSnÞ ¼ Z), have
attracted much attention in various research fields, ranging
from high-energy to condensed-matter physics [1–3]. It
has been demonstrated that the two-dimensional (2D)
Skyrmion spontaneously appears as the ground state in
helical magnets MnSi and Fe1-xCoxSi [4–6], a quantum
Hall state [7], and continuous vortices analogous to
Skyrmions in 3He-A [8,9]. Furthermore, it has recently
been created by using the phase-imprinting technique in
gaseous Bose-Einstein condensates (BECs) [10]. So far,
those are all 2D objects.

The three-dimensional (3D) Skyrmion is a particlelike
soliton in classical field theory, which was hypothetically
introduced by Skyrme [1] to describe baryons in a meson
field. Although this hypothesis has attracted a lot of
attention for decades, the evidence has yet to be clarified.
One difficulty of the proposal is due to the instability of
Skyrmions: it is known that in the nonlinear �-model, the
gradient energy makes the 3D Skyrmion unstable toward
shrinkage, in spite of the topological stability [1,3], be-
cause the energetics differs from topology. To prevent it
from shrinkage, Skyrme [1] added by hand the quartic
differential term, which is the so-called Skyrme term.
Instead of adding an ad hoc Skyrme term, it has been
clarified that a non-Abelian gauge field in the form of the
t’ Hooft–Polyakov monopole, which yields the scaling law
the same as the Skyrme term, facilitates the stability of the
3D Skyrmion [11]. It is, however, a nonrealistic and purely
theoretical proposal because such a non-Abelian gauge
field does not exist in the meson field theory.

On the other hand, the stability of the 3D Skyrmions in
multicomponent BECs has been investigated since their
proposals [12,13]. Although the schemes to create and
stabilize them [14–19] have theoretically been proposed,
the 3D Skyrmion is still elusive, both experimentally and
theoretically. One reason is that the Skyrmions in previous

works are merely metastable solutions of the energy func-
tional [14–19].
The aim in this Letter is to clarify that a 3D Skyrmion

spontaneously emerges as the ‘‘ground state’’ of BECs,
coupled with a realistic non-Abelian gauge field, without
the help of the Skyrme term. This is the first proposal of the
stable Skyrmions with the 3D analogue of the Rashba spin-
orbit coupling. First, we demonstrate that the stability of
the 3D Skyrmion is physically understandable with the
concept of the helical modulation of the order parameter
(OP) [20,21]. We show the phase diagram and the stable
Skyrmion textures by numerically solving the full Gross-
Pitaevskii (GP) equation. Here, we mainly focus on a BEC
with an SUð2Þ symmetric interaction to capture the essen-
tial physics in the presence of the non-Abelian gauge
field, as widely studied in the earlier works [14–19].
The Hamiltonian is analogous to the Higgs sector of
the Weinberg-Salam model of electroweak interactions
[22]. However, we also consider the stability of the 3D
Skyrmion against the interaction without SUð2Þ symmetry.
Recently, there was a major breakthrough that enabled

one to artificially imprint a gauge field in ultracold atoms
[23–25]. This is intriguing in the sense of accessibility to
new topological phases and the appearance of spatially
modulated ground states due to non-Abelian gauge fields
[26]. The technique is based on the Raman coupling be-
tween hyperfine states of atoms which reconstructs the
internal degrees of freedom to be degenerate pseudospin
states. The Hamiltonian in the pseudospin representation
has a fictitious Abelian or non-Abelian gauge field due to
the adiabatic motion of its degenerate pseudospin states.
The schemes to generate various types of gauge fields

have been proposed theoretically. In two-component
BECs, there exist methods to generate 2D and 3D ana-
logues to the Rashba spin-orbit coupling [27–29] and a
monopole field with a Dirac string [30]. Recently, the one-
dimensional (1D) Rashbaþ Dresselhause type gauge field
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was experimentally realized by the NIST group [25]. Fermi
gases coupled with a non-Abelian gauge field were also
investigated [31,32]. In this Letter, we clarify how such
non-Abelian gauge fields stabilize the 3D Skyrmion.

Phase diagram.—We start with the GP energy functional
for two-component bosons with the atom mass m and
pseudospins " , # as

E ¼ H 0 þ
Z

d3r

�
1

2
r2nþ c0n

2 þ c1n
2S2z

�
; (1)

where the particle density is nðrÞ � ��
��� and the

ẑ-component of the local spin is SzðrÞ � 1
2n�

�
�ð�zÞ����.

Throughout this Letter, the repeated Greek indices imply
the sum on the spin �, �, � ¼" , # and we use the unit of
@¼m¼!¼1, where ! is the trap frequency. The c0þc1
is the interaction strength between bosons in the same
pseudospin component, and the c1 indicates the interaction
between the intercomponents. The OP �� for the conden-

sate obeys the normalization condition,
R
��

���d
3r ¼ 1.

The single particle Hamiltonian H 0 in Eq. (1) is given by

H 0 ¼
Z

d3r½D����ðrÞ�y � ½D����ðrÞ�: (2)

Here, we set the covariant derivative D�� ¼ ð�ir�0 þ
AÞ�� with the 2� 2 unit matrix �0 and a non-Abelian

gauge field A. In most of this Letter, we set c1 ¼ 0 in
Eq. (1), which ensures the SUð2Þ symmetry of the interac-
tion. However, we will mention later that the finite c1 does
not make the Skyrmion unstable.

First of all, we summarize in Fig. 1(a) the schematic
phase diagram of BECs coupled with the 3D non-Abelian
gauge field,

A ¼ �?ð�xx̂þ �yŷÞ þ �z�zẑ; (3)

where �j denotes the j-th Pauli matrix. This is the 3D

analogue of a Rashba or Dresselhause type spin-orbit
coupling, which is known in the condensed matter context.
In fact, the scheme to generate this type of synthetic gauge
field with �z ¼ �? [29] and �z ¼ 0 [27,28] was proposed
theoretically, and the case of �? ¼ 0 was realized in the
experiment [25] as mentioned. In Fig. 1(a), we find out the
stable region of the 3D Skyrmion texture, while the other
regions are occupied by the 1D or 2D Skyrmion. It turns

out that these textures smoothly change to each other. It is
demonstrated in the rest of this Letter that all types of
Skyrmions whose textures are displayed in Fig. 2 are
understandable with the helical modulation of the OP
which can be parametrized on the three-dimensional sur-
face S3 in the OP space.
Helical spin modulation and Skyrmions.—The concept

of the helical modulation of the OP [21] provides a good
starting point to the understanding of the stability and
smooth transition of Skyrmions under the non-Abelian
gauge field described in Eq. (3).
The OP of a two-component BEC is always parame-

trized, the Uð1Þ phase � � �ðrÞ, and the angles �s �
�sðrÞ and �s � �sðrÞ, as

�"ðrÞ
�#ðrÞ

� �
¼ ffiffiffiffiffiffiffiffiffi

nðrÞp
ei�e�i�z�s=2e�i�y�s=2

1
0

� �
: (4)

Here, as shown in Fig. 1(b), �sðrÞ and �sðrÞ denote
the direction of the local spin, SjðrÞ � 1

2�
�
�ðrÞ�

ð�jÞ����ðrÞ=nðrÞ. Since the OP manifold in Eq. (4) is

mapped onto a three-dimensional surface SUð2Þ ’ S3,
two-component BECs have a topological object classified
by the homotopy group �3ðS3Þ ¼ Z.

3D Skyrmion

1D2D

Discrete
(a)

 Skyrmion  Skyrmion

(b)

FIG. 1 (color online). (a) Schematic phase diagram of textures
and the symmetries ofH 0. At �z ¼ �?, the Hamiltonian has an
SOð3ÞRþS symmetry. (b) Schematic picture of the helical spin
modulation along h. The thick green (gray) arrow depicts the

local spin Sð0Þj � 1
2 f�ð0Þ

� ðr0Þg�ð�jÞ���
ð0Þ
� ðr0Þ=nðr0Þ.

(a)

0.01.00.0 0.1)c()b(

FIG. 2 (color online). The spatial profile of the stable 3D
Skyrmion in the x̂-ŷ and ẑ-x̂ planes. The arrows and their colors
in (a) indicate the pseudospin direction and the Uð1Þ phase of the
OP, respectively. The gray lines in (a) imply the singularity of
� and �s. The color maps of (b) and (c) give the amplitudes
j�"ðrÞj and j�#ðrÞj, respectively. The black arrows in (b) and (c)

denote the directions of the phase winding of each component.
These results are obtained with the parameter ð�?R0; �zR0Þ ¼
ð5:07; 5:07Þ, where R0 ¼ ð15c0=2�Þ1=5.
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Turning now to a non-Abelian gauged BEC, we demon-
strate that the helical modulation of the OP due to the field
A makes the Skyrmion stable even without the Skyrme
term. It is crucial to observe that the helical modulation
with an arbitrary modulation vector h can be written down
within the SUð2Þ symmetric OP in Eq. (4) as

�H
�ðr;hÞ ¼ U��ðĥ; 2h � rÞ�ð0Þ

� ðr0Þ; (5)

where the 2� 2 matrix Uðn̂; ’Þ ¼ exp½ið’=2Þðn̂ � �Þ� 2
SUð2Þ denotes the SUð2Þ rotation of an arbitrary OP �ð0Þ

�

around n̂ by the angle ’. Figure 1(b) shows the schematic
picture of this modulation. The helicity originates from
the single particle spectrum E0 ¼ H 0 of ideal Bose gases

in the thermodynamic limit ��ðrÞ ¼ eik�r�ð0Þ
� , which is

given by E0¼k2þ�2�2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
zk

2
zþ�2

?ðk2xþk2yÞ
q

with �2 ¼
�2
z þ 2�2

?. It turns out that the OP of the ground state is

spatially modulated, since E0 has minima on the finite k.

Then, the helical modulation with ĥ in Eq. (5) is the
superposition of momentum eigenstates k k �h. The spa-
tial inversion symmetry of H 0 guarantees the degeneracy

of the helical modulation starting from an arbitrary �ð0Þ
� .

For �z ¼ �? ¼ �=
ffiffiffi
3

p
, the single particle Hamiltonian

H 0 in Eq. (1) is invariant under the simultaneous rotation
of spin and real spaces SOð3ÞRþS. Since E0 has minima on

surface k ¼ �=
ffiffiffi
3

p
, the helical spin modulation in Eq. (5) is

degenerate for any direction of ĥ k k̂. Note that the 3D
helical modulation �H

�ðr;h k rÞ propagating with all the

directions of h along r fulfills the OP manifold S3 within
0 � h � r � �. Thus, this texture �3D

� � �H
�ðr̂; 2h � rÞ is

the 3D Skyrmion, which is the candidate of the ground
state.

In contrast, for the region �z=�? < 1 in Fig. 1(a), the
SOð3ÞRþS symmetry in H 0 in Eq. (1) is broken into the
SOð2ÞRþS that denotes the joint rotation of spin and real
spaces around the ẑ-axis.E0 also has a minimum line along

k? �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
¼ �?. Therefore, it turns out that the pos-

sible stable texture for �z < �? is the radial or the 1D
helical spin modulation expressed by Eq. (5) with
h k ðkx; ky; 0Þ, where the former corresponds to a 2D

Skyrmion [33].
For the region �z=�? > 1 in Fig. 1(a), the Hamiltonian

(1) still remains invariant under the discrete symmetry
that is the simultaneous �-rotation of spin and real
spaces around the x̂- or ŷ-axis, where E0 has minima at
k ¼ ��zẑ. Then, the most stable modulation vector h is
confined to the ẑ-axis, implying that the possible stable
texture is the 1D helical modulation along ẑ-axis. Since
this spin-rotation along the ẑ-axis consists of the Uð1Þ
degrees of freedom, we can interpret this helical spin
modulation as a 1D Skyrmion.

Stable Skyrmion textures.—In order to quantitatively
discuss the candidates of the stable spin textures, we
numerically minimize the full Gross-Pitaevskii energy

functional (1) by using the imaginary time evolution
scheme [34] with a spatial grid of 1213. We have verified
that the obtained solution is the true ground state by starting
the calculation from a variety of initial conditions, such as
the uniform spin, helical modulation with a variety of
modulationvectors, and 2D and 3DSkyrmions. For numeri-
cal calculations, we use c0 ¼ 100, where the density profile
yields aGaussian-like shape. This parameter corresponds to
the trap frequency !=2� ¼ 100 Hz and s-wave scattering
length of the same component a11 ¼ a22 ¼ 5 nm with the
87Rb mass and number of trapped atoms N ¼ 5� 104.

These values define the length of the trap unit as
ffiffiffiffiffiffiffiffiffiffiffiffiffi
@=m!

p ’
1 �m. To quantify the size of the atomic cloud, we use the
Thomas-Fermi radius R0 ¼

ffiffiffiffiffiffiffiffiffi
2�0

p ¼ 2:99 in the trap unit,

where�0 ¼ ð15c0=2�Þ2=5=2 is the chemical potential with
the Thomas-Fermi approximation.
Figure 2 shows the stable 3D Skyrmion obtained from

the numerical minimization of Eq. (1) in the presence of
the gauge field with �? ¼ �z and the spherical trap poten-
tial. Figure 2(a) shows that the pseudospin texture helically
modulates along the 3D radial direction. In this texture, the
singularity of the Uð1Þ phase � and the angle �s intro-
duced in Eq. (4) exists on the gray line where the local spin
points to ẑ (�#-singularity) or �ẑ (�"-singularity) direc-
tion. As shown in Fig. 2(b) and 2(c), OP component ��

accumulates the phase 2� on the path enclosing its singu-
larity. Namely, �" forms the vortex ring and its ring-

singularity is fulfilled by �# with the phase winding.

This can be interpreted as the so-called ‘‘vorton’’ structure
known in high-energy physics [8,35].
The 3D Skyrmion is identified by the winding number

�3ðS3Þ of the map from real space to the OP mani-
fold SUð2Þ ’ S3. The winding number defined by
Refs. [1,14–17]

W3D ¼ 1

8�2

Z
d3r	ijk sin�Sð@i�SÞð@j�SÞð@k�Þ; (6)

counts how many times the map warps the OP manifold.
Figure 3(a) shows the winding numberW3D in the plane of
�z=�? and R0�?, obtained from the numerical solution of
the full GP equation. Here, we estimate Eq. (6) in the
region of r � 1:5R0. It is seen from Fig. 3(a) that W3D

increases with growth of the �?=R0 near the �z=�? ¼ 1
line. Hence, in this region, the 3D Skyrmion becomes
stable. This continuous increase of W3D is because of the
absence of the boundary condition that ��ðr ! 1Þ is

nonzero and uniform, assumed for Skyrmions in other
contexts. So far as the boundary condition is satisfied,
W3D 2 Z and 3D Skyrmion is topologically stable.
However, the presence of the vector potential A makes
��ðr ! 1Þ nonuniform even if we ignore the effect of the

trap. In fact, with increasing of �z ¼ �? * R�1
0 , the char-

acteristic length of the helical spin modulation becomes
smaller and the shell-shaped Skyrmion penetrates from
outside of the system in addition to a unit of the
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Skyrmion. Therefore, as � increases, W3D increases con-
tinuously and monotonically as shown in Fig. 3(a).

One- and two-dimensional Skyrmions.—The 2D
Skyrmion texture is described as �2D

� ¼ �H
�ðr;h k �Þ,

where � ¼ xþ y. The Skyrmion �2D
� consists of the

helical spin modulation along the 2D radial direction,
which is favored by the gauge field described in Eq. (3)
as mentioned above. This texture occupies the region
�z=�? & 1 in Fig. 1(a). If we ignore the Uð1Þ phase �,
the winding number of this 2D Skyrmion can be defined as
W2D ¼ 1

4�

R
d3r	ij sin�Sð@i�SÞð@j�SÞ [33].

We should notice that the winding number of �2D
� is

determined by the domain of the rotating angle �; W2D ¼
þ1 (� 1) is accumulated within n� <�< ðnþ 1=2Þ�
(ðn� 1=2Þ�<�< n�). This implies that with increas-
ing �?, the Skyrmion (W2D¼þ1) and anti-Skyrmion
(W2D¼�1) penetrates from outside alternately. Hence,
W2D of 2D Skyrmion �2D

� oscillates with increasing �?.
Instead of W2D, one can estimate the size of the 2D
Skyrmion with the helicity introduced as H2D ¼
1
4�

R
d3rj	ij sin�Sð@i�SÞð@j�SÞj.

The 1D Skyrmion along the ẑ-axis is described as
�1D

� ¼ �H
�ðr;h k zÞ. This appears as the ground state in

the region �z=�? * 1 of Fig. 1(a), where the modulation
vector h / ��zẑ is favored as discussed above. The wind-

ing number for the 1D Skyrmion is introduced as W1D ¼
1
2�

R
dz

��
�@zð�zÞ����

��
���

þ c:c:. This corresponds to the phase

accumulation which quantifies the spin current of Sz along
ẑ-axis.

We plot W1D and H2D in Figs. 3(b) and 3(c), where they
reveal the stable region of the 1D and 2D Skyrmions in the

parameter space spanned by �z and �?. In the region
�z=�? & 1, the 2D Skyrmion is stabilized where the
helicity H2D increases and W3D and W1D are suppressed.
In the other region, �z=�? * 1, the growth ofW1D and the
suppression of W3D and H2D indicate the appearance of
the 1D Skyrmion. Figure 3 provides evidence of the sche-
matic phase diagram in Fig. 1(a).
Three types of Skyrmions can be continuously trans-

formed into each other, and the transition between them is
identified as the second-order transition. The cylindrical
singularity of the component �" and �# in the 2D

Skyrmion continuously deforms to sphere and ring-shaped
ones, and then the texture changes into the 3D Skyrmion.
This is confirmed by the imaginary time evolution of
the GP functional (1), which demonstrates that the 2D
Skyrmion state becomes unstable in the vicinity of
�z=�? 	 1 toward the 3D Skyrmion. The 3D Skyrmion
state also becomes unstable in the region of �z=�? * 1,
where the singular line and sphere of �" described in

Fig. 2(a). Hence, the 2D Skyrmion solution smoothly trans-
forms to 1D Skyrmion through the 3D Skyrmion as �z=�?
varies from þ0 to þ1, and the 3D Skyrmion texture
spontaneously appears at �z=�? ’ 1.
We emphasize that the smooth transition behavior be-

tween Skyrmions ensures the stability region of the 3D
Skyrmion against finite c1 � 0, which breaks the SUð2Þ
symmetry in Eq. (1). This is because the stability of 1D and
2D Skyrmions in the limit �z ! 0 and �? ! 0 stays un-
changed in c1 � 0 [20,36]. In fact, within 0< c1=c0 & 1,
we numerically confirm that the winding number W3D

increases as approaching �z=�? ! 1 and the 3D

Skyrmion �3D ¼ U��ðr̂; 2�rÞ�ð0Þ
� with ð�ð0Þ

" ;�ð0Þ
# Þ ¼

ð1; 0Þ is stabilized. In the case of c1=c0 < 0, the 3D

Skyrmion with ð�ð0Þ
" ;�ð0Þ

# Þ ¼ ð1; 1Þ is also stabilized.

Skyrmions in other systems.—The stability of the 3D
Skyrmion in other spinor systems is worth a mention in
passing. For instance, we find that the 3D gauge field in
Eq. (3) cannot stabilize the 3D Skyrmion in the polar phase
of a hyperfine spin F ¼ 1 spinor BEC, which is the ‘‘knot’’
soliton. This is because the helical modulation of the polar
OP is not degenerate for the 3D direction of the modulation
vector [37,38]. In fact, the OP manifold in the polar phase
reduces to an SOð2Þ symmetry in spin space. Hence, since
the helical modulation vector along the direction of the
SOð2Þ rotation axis cannot gain the single particle energy
E0, only the 2D or 1D Skyrmion can be stable in this
system. In the ferromagnetic phase of an F ¼ 1 spinor
BEC, the 1D Skyrmion [20] and the 2D half-Skyrmion
[39] are proposed. However, the problem on the stability of
the 3D Skyrmion remains as nontrivial.
Conclusions.—Here, we have demonstrated that the 3D

Skyrmion spontaneously appears as the ground state of
two-component BECs coupled with a non-Abelian gauge
field, which is a 3D analogue of the Rashba spin-orbit
coupling. The appropriate gauge field and the spherical

(a)
 0.0
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FIG. 3 (color online). Stereographic plots of W3D (a),
H2D=R

0 (b), and W1D=�R
02 c) in the plane of �z=�? and

�?R0. These denote the winding numbers and helicity which
quantify the 1D, 2D, and 3D Skyrmions. We estimate these
values in the region of r � 1:5R0 � R0.
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density distribution due to the trap potential are necessary
to stabilize the Skyrmions. Upon squashing the 3D gauge
field to 1D or 2D shape, the 3D Skyrmion continuously
undergoes a change to 1D or 2D Skyrmion. We computed
the ground state phase diagram with the winding numbers
and helicity, which is covered by three types of Skyrmions.
All of the emerged Skyrmions are understandable with the
concept of the helical modulation of the order parameter.
In addition to the SUð2Þ symmetric interaction, we also
consider the stability of Skyrmions against an SUð2Þ non-
symmetric interaction. Then, we confirmed that the asym-
metric term does not alter the phase diagram. However,
the interaction in the presence of a synthetic gauge
field depends on the detail of the scheme to imprint it.
The complete phase diagram in the more realistic situation
remains as a future problem.
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Note added.—After we submitted this Letter, we became
aware of two papers [40,41] that discuss the ground state
properties under the gauge field, the same as our work.
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