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We report on high-resolution, three-dimensional, high Rayleigh number, and low density ratio

numerical simulations of fingering convection. We observe a previously unreported phenomenon of

self-organization of fingers that cluster together to form larger-scale coherent structures. The flow

ultimately forms density staircases, alternating well-mixed regions with fingering convective zones. We

give evidence that the mechanical mixing induced by the clusters forms the staircases with a mechanism

analogous to staircase formation in a stably stratified, nonconvective, stirred fluid.

DOI: 10.1103/PhysRevLett.109.014502 PACS numbers: 47.20.Bp, 47.55.P�, 92.10.af

Fingering convection plays an important role in many
fields, ranging from stellar astrophysics to metallurgy [1],
and is of particular interest in oceanography, where it may
generate large heat and salt fluxes with an impact on the
global circulation and on climate [2–4]. This peculiar
convective flow occurs when two buoyancy-changing sca-
lars with different diffusivities, such as salt and tempera-
ture, make an overall bottom-heavy density stratification,
but the least-diffusing one, taken alone, would produce a
top-heavy stratification. In the fingering regime, a fluid
parcel displaced from its equilibrium height exchanges
the better diffusing and stabilizing scalar faster than it
exchanges the destabilizing one, developing a buoyancy
anomaly that further increases the displacement. The
linear stability properties of the doubly diffusive instability
are well understood [3,5,6] and, close to marginality,
tall, fingerlike convection plumes emerge (hence the
name). Far from the instability, in the highly nonlinear
regime, these tall structures appear just as a short transient,
after which the convection is sustained by the motion
of almost spherical, bloblike structures [3,7], and the sta-
tistics of the fluctuations of the scalars become non-
Gaussian [8].

An intriguing phenomenon that happens at high
Rayleigh number and low density ratio (a measure of the
relative contribution to the buoyancy of the two scalars) is
an instability of the horizontally averaged profiles of tem-
perature, salinity, and buoyancy. Laboratory experiments
show that initially constant vertical gradients develop kinks
which steepen and evolve into an alternation of well-mixed
zones characterized by Bénard-like convection cells and
high-gradient layers populated by fingers [9]. Such stair-
case profiles are found in the main thermocline of the
subtropical oceans and of many marginal seas [2]. The
staircase-forming regime of fingering convection has
eluded numerical simulations for a long time, so long, in
fact, that doubts were cast on its reality [7]. Recently, a
report on numerical simulations reproducing staircases in a
vertically periodic domain has been published [10].

In this Letter, we report on three-dimensional staircase-
forming simulations with temperature and salinity held
fixed at rigid top and bottom plates, as in the experiments
of R. Krishnamurti [9]. We work in a regime of very low
density ratio and high Rayleigh number, associated with
very high numerical resolution (to our knowledge unpre-
cedented for this problem). We find a previously unre-
ported phenomenon of self-organization of fingers that
cluster together to form large-scale coherent structures.
This is reminiscent of the clustering of plumes in high
aspect-ratio Rayleigh-Bénard convection [11,12]. We sug-
gest a mechanism of staircase formation that occurs in two
phases: first, the fingers group to form coherent structures
at larger scales; then, the mechanical mixing induced by
those clusters forms the staircases with a mechanism
analogous to that of staircase formation in a stably strati-
fied (nonconvective) stirred fluid [13–18].
The nondimensional equations of motion of fingering

convection, in the Boussinesq approximation, are

@u

@t
þ u � ru ¼ �rpþ PrLe½RSBẑþr2u�; (1)

@T

@t
þ u � rT ¼ Ler2T; (2)

@S

@t
þ u � rS ¼ r2S; (3)

r � u ¼ 0; (4)

where we have denoted the least-diffusing scalar as salin-
ity, S, and the most-diffusing one as temperature, T. Here,
u ¼ ðu; v; wÞ is the solenoidal velocity field of the fluid, p
is the pressure, ẑ is the vertical unit vector, and we have
defined the buoyancy field B ¼ R�T � S.

The problem has been brought to a nondimensional form
by scaling temperature and salinity with their plate differ-
ences �T and �S, scaling lengths with the layer thickness,
d, and using the haline diffusive time, �S ¼ d2=�S, as a
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time scale, with �S the haline diffusivity [8]. The non-
dimensional control parameters of the problem are the
Prandtl number, Pr ¼ �

�T
, the Lewis number, Le ¼ �T

�S
,

the haline Rayleigh number, RS ¼ g��Sd3

��S
, and the density

ratio, R� ¼ ��T
��S . In these expressions, � is the kinematic

viscosity, �T is the thermal diffusivity, g is the modulus of
the gravity acceleration, and � and � are the linear thermal
and haline expansion coefficients. For uniform vertical
gradients of the initial stratification, a necessary condition
for the fingering instability to occur is 1<R� < Le [3].

We integrate the equations numerically with a hybrid
spectral-finite difference code with laterally periodic and
free-slip top and bottom boundary conditions [11,19]. The
initial condition is a random perturbation of the conductive
solution. We fix the parameters at RS ¼ 1013, Pr ¼ 10,
Le ¼ 3, and R� ¼ 1:025. These choices represent an ex-

tremely high Rayleigh number and low density ratio, en-
suring a vigorous convection. The domain is a slab of sizes
Lx ¼ 0:2, Ly ¼ 0:05, Lz ¼ 1 with corresponding resolu-

tions Nx ¼ 768, Ny ¼ 192, Nz ¼ 5120 grid points which

adequately resolve both the steep boundary layers and the
equally high gradients at the fingertips. A horizontal sec-
tion of the domain contains approximately 32� 8 finger
widths, estimated as the half-wavelength lf ¼
�fLe=½RsðR� � 1Þ�g0:25 � 0:006 of the fastest growing

mode [3]. The simulation was continued up to nondimen-
sional time t ¼ 1:5� 10�5, with a time step �t ¼ 10�10,
requiring a total of 150 000 core hours, using 128 cores on
a parallel supercomputer [20].

After an initial transient in which the upper and lower
boundary layers form, the flow is characterized by the
emergence of intense bloblike structures (we shall still
call them fingers) which create a vigorous up-gradient
vertical buoyancy flux. Figure 1 shows vertical sections
of the salinity anomaly at three different times. Already
at an early stage, a large number of fingers are visible
[Fig. 1(a)]. They are characterized by typical mushroom-
like tips, similar to the plumes of thermal convection, and
are homogenously distributed in the domain. As time
evolves, we observe a completely new phenomenon, as
the fingers tend to cluster together to form larger-scale
structures [Figs. 1(b) and 1(c)] which ultimately reach a
horizontal extension which is comparable to the size of the
domain.

The growth of the characteristic scales in the flow with
the generation of large-scale structures is illustrated in
Fig. 2, showing kinetic energy spectra EðkÞ as a function
of the horizontal wavelength, � ¼ 2�=k, for the three
times shown in Fig. 1. At the earliest time, we recognize
a clear spectral peak at the wavelength of finger formation.
Later, the spectra evolve as more and more kinetic energy
appears at large scales, until the spectral maximum reaches
the scale of the box. To characterize the evolution of the
spectra, we show in the inset of Fig. 2 the growth in time of

the integral scale � ¼ 2�
R½EðkÞ=k�dk=REðkÞdk, which

we use to define a characteristic size of the largest dynami-
cal flow structures [11,12]. Starting from the characteristic
scale of fingers, the integral scale grows until it becomes
comparable to the size of the box. A sequence of intense
oscillations follows, which are correlated with oscillations

FIG. 1 (color online). Vertical sections at y ¼ Ly=2 (lower
panels) and horizontal sections at z ¼ 0 (upper panels) of salt
anomaly, S0ðx; y; zÞ ¼ Sðx; y; zÞ � �SðzÞ, in the central portion of
the domain �0:3< z < 0:3, at three different times.
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FIG. 2 (color online). Evolution with time of total kinetic
energy spectra as a function of the horizontal wavelength (� ¼
2�=k). The spectra have been averaged over the central portion
of the domain (from�0:3< z < 0:3Þ and over three consecutive
time steps spaced 	t ¼ 10�7. The inset shows the time evolution
of the integral scale � defined in the text.
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in the vertical convective buoyancy flux (not shown) and
with a period which is comparable with the buoyancy

period �buoy ¼ 2�=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PrLeRSðR� � 1Þ

q
. We associate this

evolution with the initial formation of finger clusters,
leading to a growth of the average scales in the flow,
followed by a regime in which the flow is dominated by
the motion and large-scale dynamical interactions between
the clusters.

The structure of the finger clusters is illustrated by
enlargements of vertical sections of the flow in Fig. 3.
The temperature and salinity fields confirm that individual,
mushroom-tipped fingers of the same sign tend to group
together. The smoother vertical velocity field shows that
those clusters form a coherent whole moving together. The
buoyancy field shows the fine internal structure of the
clusters, where anomalies of both signs are found.
However, spatial low-pass filtering of the buoyancy field
(not shown) reveals the prevalence of contributions with
the same sign as the cluster’s vertical velocity. These
figures illustrate the mechanism at work for the formation
of the clusters: when a few fingers of the same sign happen
to be close to each other, dragging further fluid with them,
they create scalar anomalies which may trigger the double-
diffusive instability and promote the formation of new
fingers. In fact, earlier evidence shows that at high
Rayleigh number and low density ratio, the Reynolds
number associated with individual salt fingers may exceed
one [8], allowing fingers to drag some fluid around them-
selves. In order to maintain an overall buoyancy anomaly,
the clusters must continuously exchange temperature with

the surrounding environment, developing an internal cir-
culation which in a way is reminiscent of the kinematics of
a cluster of solid particles [21]. Clusters are then higher-
order, doubly diffusive structures, where an effective dif-
fusivity generated by the motion within the cluster plays
the role of the temperature diffusivity. This mechanism
naturally hints at an upper bound for the scale of the
clusters, although in our simulation the scale is bounded
by the lateral box size.
The appearance of the finger clusters is associated also

with other large-scale changes in the flow, as demonstrated
in Fig. 4, which reports the evolution in time of profiles
of horizontally averaged buoyancy, �BðzÞ, in the central
portion of the domain. Starting from an initially vertically
constant gradient of buoyancy, the flow develops staircase-
like profiles, characterized by the alternation of well-mixed
regions with zones with a steep gradient. Similar profiles
are found in terms of T and S.
The elusive nature of fingering staircases may be under-

stood by the inability of the individual fingers to stir the
background buoyancy gradient. The passage of a finger of
size l in a stratified fluid will produce a disturbance of a
similar size which is viscously dissipated on a time scale
�� � l2=ðPrLeÞ. In order to stir the stratification, the dis-
turbance must be able to perform a complete roll-up and
survive at least for a buoyancy period �buoy (defined

above). The ratio of the two time scales is ��=�buoy �
�=ð2 ffiffiffiffiffi

Pr
p Þ if we use the finger scale lf defined above, or,

alternatively, ��=�buoy � �=ð2 ffiffiffiffiffi
Pr

p Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR� � 1Þ=R�

q
if we

use the estimate lS ¼ �½Le=ðRSR�Þ�0:25 due to Stern [5].

In both cases, fingers appear to be ineffective stirrers in a
wide parameter range, except at very low Prandtl numbers.
A similar argument can be used to show that the distur-
bances produced by large clusters produce significant stir-
ring in the fluid.
A theoretical analysis [13,14,18] of staircase formation

in mechanically stirred, stable stratifications [15,17] sug-
gests that a nonmonotonic dependence of the buoyancy
flux on the buoyancy gradient can lead to the formation of
staircases. We hypothesize that a similar mechanism is

FIG. 3 (color online). Enlargement of a vertical section of the
flow at time t ¼ 3:8� 10�6 and at y ¼ Ly=2. The panels show

salinity anomaly (upper left), temperature anomaly (upper right),
vertical velocity (lower left), and buoyancy anomaly (lower
right).
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FIG. 4. Time evolution of vertical profiles of horizontally
averaged buoyancy, �BðxÞ, in the central portion of the domain.
The frames after the first have been shifted to the right as a
function of time.
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responsible for staircase formation in fingering convection.
From Eqs. (2) and (3), we can derive an equation for the
evolution of the average buoyancy profile:

@ ~B

@t
þ @

@z

�fwB� @ ~B

@z
� R�ðLe� 1Þ @ ~T

@z

�
¼ 0; (5)

where the wavy overbar is both a horizontal average and a
vertical convolution with a compactly supported kernel of
height h (we use the Hann window). When h is larger than
the scale of the fingers, but not larger than the scale of the
clusters, then the terms in the squared parenthesis add up to
an effective flux F that determines the large-scale evolu-
tion of the horizontally averaged, vertically smoothed
buoyancy profile ~BðzÞ. Assuming, as a first approximation,
that the flux depends only on the vertical gradient ~Bz, using
the chain rule we may rewrite Eq. (5) as

@ ~B

@t
¼ dð�FÞ

d ~Bz

@2 ~B

@z2
: (6)

The local slope of ð�FÞ, then, plays the role of an effective
diffusion coefficient in a nonlinear diffusion equation for
~B. We report the flux F vs ~Bz for our simulation in Fig. 5.
The curve shows slopes which correspond to a negative
diffusion coefficient for intermediate positive values of ~Bz

sandwiched between ordinary diffusion regimes at high
and low (or negative) buoyancy gradients. This is compat-
ible with solutions of Eq. (6) alternating regions where
~Bz � 0 to regions of high buoyancy gradient and positive
effective diffusion such that Fð ~BzÞ � Fð0Þ [18].

The dominant contribution to F comes from the advec-

tive term fwB, which is almost two orders of magnitude

larger than the other two terms, even where the gradients
are the highest. When the stratification is locally top-heavy
( ~Bz < 0), both double diffusion and mechanical overturn-
ing yield a positive advective flux. For ~Bz > 0, double

diffusion gives an up-gradient buoyancy flux (fwB> 0)
which is opposed by the down-gradient flux produced by
the mechanical stirring of the clusters. At low buoyancy
gradients, stirring is more effective than double diffusion,
and the flux decreases for increasing ~Bz. At larger buoy-
ancy gradients, fast clusters do not have time to exchange
temperature with the surrounding fluid quickly enough to
maintain their buoyancy anomaly. Therefore, for increas-
ing ~Bz, the clusters slow down or dissolve, losing their
stirring ability, while unhampered fingers increase again
the net up-gradient flux. The flux cutoff at even larger
values of ~Bz may be understood by observing that very
high buoyancy gradients may be attained only in progres-
sively thinner fluid layers, sandwiched between fluid re-
gions with much lower gradients. Since lower local
Rayleigh numbers correspond to lower flux [8], as the
layers become thinner, the flux diminishes. It is important
to notice that if the interval of buoyancy gradients corre-
sponding to positive effective diffusion did not straddle
~Bz ¼ 0, then vertically homogeneous regions with zero
buoyancy gradient would not be stable for Eq. (6). Thus,
the mechanical mixing of the clusters, which ensures that F
decreases across ~Bz ¼ 0, is crucial for staircase formation.
In this Letter, we have presented evidence for a new

mechanism of staircase formation in fingering convection,
which is neither linked to intrusions [7] nor due to a non-
linear dependence of the flux ratio on the density ratio [10]
(in our simulation, the flux ratio is independent of the
density ratio). We have verified that the same mechanism
operates in two dimensions, in a wide interval of parame-
ters with a set of simulations using a different pseudospec-
tral code, to be reported elsewhere.
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