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We experimentally and theoretically study the coincidence count rate for down-converted x-ray

photons. Because of photoionization, parametric down-conversion at x-ray wavelengths generally

involves loss and the theoretical description requires a Langevin approach. By working in a transmission

geometry (Laue) rather than in the Bragg geometry of previous experiments, we obtain an improvement in

the signal-to-noise ratio of 12.5, and find agreement between experiment and theory.
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For decades, parametric down-conversion (PDC) has
been widely used as a source for generating entangled
photons in the infrared and visible spectral regimes and
has resulted in remarkable insights into many quantum
phenomena [1]. The extension of PDC to the x-ray regime
was proposed by Freund and Levine [2] and demonstrated
with a hard x-ray tube by Eisenberger 40 years ago [3]. The
essence of these early papers was the realization that
though the plasmalike nonlinearity at x-ray wavelengths
is much smaller than visible nonlinearities, the number of
driving k-space modes is vastly larger. In recent years, the
use of synchrotrons has allowed considerable experimental
progress [4], and recent experiments have opened the
possibility for investigating the optical response of chemi-
cal bonds by PDC from the x-ray range to the x-ray and UV
range [5–7]. New theoretical results suggest a method for
generating Bell states at x-ray wavelengths [8], thereby
allowing the possibility of the use of high-efficiency
photon-number-state resolving detectors.

This Letter describes a substantial difference between
PDC as observed in the visible and at x-ray wavelengths.
This difference is the result of the inherent loss due to
photoionization at the generated x-ray wavelengths, as
compared to the near zero loss at generated optical and
infrared wavelengths. For example, the absorption coeffi-
cient of diamond at 4 keV is 132:6 cm�1 and at 9 keV is
10:2 cm�1. Theories [9,10] that are correct when there is no
loss are incorrect in the presence of loss. In the Heisenberg
picture, without loss, vacuum fields at the signal and idler at
the crystal input act as the driver for the down-conversion
process. In the presence of loss these vacuum fields decay
and a non-Langevin theory predicts that the parametric
fluorescence exponentially approaches zero as the crystal
length becomes many decay lengths long. This shortcoming
is removed by the inclusion of appropriate Langevin terms
in the Heisenberg equation. In this picture the loss process at
the signal or idler is inherently tied to fluctuation, and these
fluctuations are the driver for the down-conversion process.
This is far more than a technical correction: with the
Langevin fluctuations included, the signal and idler count

rates, as well as the coincidence count rate, for a sufficiently
long crystal, depend on the absorption length but not on the
crystal length.
The previous theory of x-ray PDC [2] relies on the early

work of Kleinman [10]. It describes the count rate of a
single detector measuring one of the paired photons, while
all experimental x-ray down-conversion papers have de-
scribed coincidence count rates. In the presence of loss, the
coincidence count rate is substantially lower than the
single photon count rate. For example, our calculations
show that, when the pump photon energy is 18 keV and
the photon energy of the signal and the idler photons is
9 keV, the signal or idler count rate is 6.3 times larger than
the coincidence count rate. When the photon energy of the
signal is 13.5 keV, the signal count rate is higher than the
coincidence count rate by a factor of 171.4.
At x-ray wavelengths, Compton scattering of the pump-

ing beam is significantly stronger than the down-converted
signal. Detection is therefore done by coincidence count-
ing of the signal and idler photons. Typically, the main
noise source is simultaneous Compton counts at the two
detectors, and the noise is proportional to the square of the
Compton scattering rate and to the square of the path
length that the pump travels in the nonlinear crystal. The
theory described here shows that only the last absorption
length of the generating crystal contributes to the para-
metric coincidence count rate and any portion of the crystal
longer than the absorption length contributes only to the
background noise. The absorption length at 4.5 keV, which
is the lowest photon energy we measure, is 0.108 mm. Our
crystal length is 0.48 mm, and the optical path inside the
crystal is 0.5 and 1.77 mm in transmission and reflection
geometries, respectively. By working in the transmission
geometry, and not in reflection as in previous experiments,
we obtain approximately a 12.5 improvement in the signal-
to-noise ratio.
The Langevin method is a standard method to describe

quantum systems that exhibit loss [11,12]. Several authors
have considered the effect of cavity output coupling and
included the effect of Langevin terms on PDC [13–17].
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The Langevin method has also been used to describe the
generation of paired photons by electromagnetically in-
duced transparency [18–22].

A typical phase-matching diagram for x-ray PDC is
shown in Fig. 1. We denote the signal, idler, and pump

wave vectors, respectively, as ~ks, ~ki, and ~kp. ~G denotes the

reciprocal lattice vector. The phase-matching condition is
~ks þ ~ki ¼ ~kp þ ~G. We use the (220) atomic planes with

the lattice k vector in the direction of the x axis. We
develop the theory in the Heisenberg picture and define
the transverse wave vector qj ¼ ðkjx; kjyÞ, where kjx and

kjy are the wave-vector components parallel to the surfaces

of the crystal. The output of the generator crystal is de-
scribed by frequency domain operators asðz ¼ L;qs; !sÞ
and aiðz ¼ L;qi; !iÞ, with !p ¼ !s þ!i and qp þG ¼
qs þ qi. We consider a plane monochromatic pump at !p,

propagating at an angle �p with regard to the z axis in the

x-z plane. The time-space signal and idler operators are
related to their frequency domain counterparts by

asðz;r; tÞ¼
Z 1

0

Z 1

�1
asðz;q;!Þexp½�iðq �r�!tÞ�dqd!;

aiðz;r;tÞ¼
Z 1

0

Z 1

�1
aiðz;q;!Þexp½�iðq �r�!tÞ�dqd!;

where r ¼ ðx; yÞ, with commutators,

½ajðz1;q1; !1Þ; ayk ðz2;q2; !2Þ�
¼ 1

ð2�Þ3 �j;k�ðz1 � z2Þ�ðq1 � q2Þ�ð!1 �!2Þ: (1)

The operators aðz;q; !Þ are the coarse-grained annihila-
tion operators of a photon in a specific mode. These
operators are normalized so that the signal and idler count

rate is Rs ¼ hays ðr; tÞasðr; tÞi and Ri ¼ hayi ðr; tÞaiðr; tÞi,
respectively. The factor �j;k is included in the commutator

to account for the polarization property: when the
pump polarization is normal to the scattering plane, the
polarization of the signal must be normal to the idler
polarization [8].
We assume the slowly varying envelope equations by

superposition of two physical effects, parametric down-
conversion, and propagation in a lossy medium [12].
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ffiffiffiffiffiffiffiffiffiffiffiffi
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ffiffiffiffiffiffiffiffiffiffiffi
2�i

cos�i

s
fyi :

(2)

The quantity �kz ¼ kp cos�p � ks cos�s � ki cos�i is the

phase mismatch in the direction normal to the diamond
boundaries (along the z axis), where kj ¼ !jnð!jÞ=c. The
boundary conditions impose exact phase matching in the x
and y directions. In Eq. (2), �s and �i are the angles of the
idler and the signal with respect to the surface normal and
are found by solving the phase-matching equations at the
given pump angle and signal-photon energy. The absorp-
tion coefficients as a function of the wavelength are �s and
�i. �

0 ¼ i�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos�s cos�i

p , where � is the nonlinear coupling

coefficient. The fsðz;q; !Þ and fyi ðz;q; !Þ are the
Langevin noise operators, and satisfy

½fjðz;q; !Þ; fyk ðz0;q0; !0Þ�
¼ 1

ð2�Þ3 �j;k�ðz� z0Þ�ðq� q0Þ�ð!�!0Þ: (3)

We solve Eq. (2) for the output operators asðL;q; !Þ and
ayi ðL;q; !Þ. These operators are expressed in terms of the
vacuum fields at the input of the nonlinear generating

crystal [asð0;q; !Þ and ayi ð0;q; !Þ], integrals over the
Langevin terms, and coefficients that depend on both the
signal frequency !s and the signal transverse k vector ~qs.
When loss is negligible, the contribution from the
Langevin terms is negligible, and the output operators
can be written as a unitary transformation of the boundary
operators. In this case, the commutators [Eq. (1)] are
conserved at all z without the Langevin terms. We have
shown numerically that when the loss cannot be ignored,
the commutators are conserved at all z only when the
Langevin terms are retained.
The coincidence count rate is

Rc ¼ A
ZZ

Gðu; �Þdud�;
where

Gðu; �Þ ¼ hayi ðr2; t2Þays ðr1; t1Þasðr1; t1Þaiðr2; t2Þi: (4)

Here, A is the area of the pump at the input of the nonlinear
crystal, u ¼ r2 � r1, and � ¼ t2 � t1.

FIG. 1 (color online). (a) Schematic of the experiment.

(b) Phase matching diagram. ~ks, ~ki, and ~kp are the wave vectors

of the signal, idler, and pump fields, respectively. ~G is the
reciprocal lattice vector orthogonal to the (220) atomic planes.
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The experiment described here was run at Beam-line
10-2 of SSRL. Figure 1(a) depicts the experimental setup.
The pump beam with a photon energy of 18 keV im-
pinges on a diamond crystal. The pump flux was
2� 1011 photons=s. The crystal length is 0.48 mm and
the spot size at the sample was 1:2� 10�7 m2. The
polarization of the pump is normal to the scattering plane.
The idler and signal beams are detected on two separate
detectors with variable apertures D1 and D2. A helium bag
between the output of the diamond and the slits of the
detectors reduced the loss due to air absorption. The angle
of the surface normal of the diamond crystal relative to the
k vector of the pump beam is 15:8853�. The various angles
of the detectors relative to the pump pointing are given in
Table I. To determine the coincidence count rate, we scan
through the recorded data and count events that satisfy the
following conditions: (1) the photon energy at detector D2
is within a certain energy acceptance window and (2) both
detectors record a count within a time window smaller than
the electronic response time.

Typical energy histograms of the coincidence count rate
generated via the PDC process are shown in Fig. 2. Here,
panels (a), (b) and (c), (d) correspond to detector angles
satisfying off-degeneracy phase-matching energy ratios of
!s=!s0 ¼ 1:2 and !s=!s0 ¼ 1:3, respectively.

Both theory and the experimental results of Fig. 2 show
that the energy of the down-converted photons correspond
to a particular emission angle. This one-to-one relation
between photon energy and the emission angle is deter-
mined by phase matching. Theory also predicts that the
total width of the angular distribution of the photon pairs
emerging from the crystal is larger than that of the aper-
tures of the detectors. Therefore, the width of the observed
energy distribution is limited by the angular acceptance of
the detector apertures.

The measured coincidence count rate depends on the
choice of the energy window for detector D2 and on the
aperture sizes of both D1 and D2. For equal angular
acceptances, we plot the energy histograms similar to
Fig. 2 for an energy window from 0.1 to 1.3 keV. We repeat
this for each of the detector angles in Table I. We sum over

the D1 counts and scale for detector efficiencies and
propagation losses (via the helium bag and the air gap
between the slits and the detectors). We repeat this proce-
dure for unequal angular acceptances (a ratio of 3.6 be-
tween solid angles of the detectors; see Supplemental
Material [23]) and for an energy window from 0.1 to
1 keV. Figure 3 shows the total coincidence count rate as
a function of the energy window. The first row shows the
degenerate phase-matching case !s=!s0 ¼ 1, and the
second row shows the off-degenerate case !s=!s0 ¼ 1:3.
The first column shows the equal angular acceptance
case (�1 ¼ �2), while the second column shows the
�1 ¼ 3:6 ��2 case.
Figure 4 shows total coincidence count rate as a function

of the deviation from the degenerate frequency. In part
(a) the aperture sizes are equal and in part (b) the aperture
size of detector D1 is larger than the aperture size of
detector D2 by a factor of 3.6. The theoretical curve is
scaled vertically by a common factor of 0.43. As we see
from Fig. 4, the theoretical curves and the experimental
results are in reasonable agreement.
The maximum generated pair rate at the degenerate

frequency is one photon pair per 40 seconds. This observed
count rate, together with the theoretical calculation of the

TABLE I. Angles of the detectors D1 and D2 with regard to
the pumping beam. The pump is at an angle of 15:8853� with
regard to the surface normal; !s and !s0 are the signal-photon
frequency and the degenerate-photon frequency, respectively.
Angles are in degrees.

!s=!s0 D1 D2

1 30.2837 33.104

1.1 30.4198 33.2804

1.2 30.5457 33.4493

1.3 30.6642 33.644

1.4 30.778 33.8753

1.5 30.8895 34.1604

FIG. 2 (color online). Energy histograms of the measured
coincidence count rate at (a), (b) !s=!s0 ¼ 1:2 and (c),
(d) !s=!s0 ¼ 1:3, both with a pump-photon-energy of 18 keV.
Parts (a) and (c) are the energy histograms of detector D1. Parts
(b) and (d) are the energy histograms of detector D2. The data are
as observed (raw) and satisfy the conditions: The photon energy
at D2 is within an energy window of 0.8 keV in part (b) and
0.6 keV in part (d), and both detectors ‘‘click’’ within a time
window which is smaller than the system response time
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nonlinearity for signal polarization in and out of the
scattering plane, yields ð�LÞ2 ¼ 5� 10�25 for either
polarization.

In summary, we have described the measurement of the
coincidence count rates of photon pairs generated via x-ray
PDC both on and off of degeneracy. These measurements
were possible due to the improvement in the signal-to-
noise ratio achieved by working in the transmission
geometry. We have described the theory of coincidence
count rate in the presence of loss and showed that the
Langevin terms are essential. The Heisenberg-Langevin
equation [Eq. (2)] is based on the fluctuation-dissipation
theorem with the assumption of a Markovian reservoir.
Microscopically, to the extent that the loss is dominated
by photoionization, the fluctuation may be viewed as re-
sulting from (virtual) two-body recombination. If there is
loss but no parametric coupling, then two-body recombi-

nation does not result in photon generation at either the
signal or the idler. But in the presence of parametric
coupling, recombination at the idler causes generation of
signal photons, and recombination at the idler causes gen-
eration of signal photons.
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