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Though topological aspects of energy bands are known to play a key role in quantum transport in solid-

state systems, the implications of Floquet band topology for transport in momentum space (i.e.,

acceleration) have not been explored so far. Using a ratchet accelerator model inspired by existing

cold-atom experiments, here we characterize a class of extended Floquet bands of one-dimensional driven

quantum systems by Chern numbers, reveal topological phase transitions therein, and theoretically predict

the quantization of adiabatic transport in momentum space. Numerical results confirm our theory and

indicate the feasibility of experimental studies.
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In both classical mechanics and quantum mechanics,
position and momentum variables form a conjugate pair
and can hence be treated on the same footing from a phase
space perspective. The real physical world, however, does
not have position-momentum symmetry. For example, en-
ergy bands of a solid are formed because electronic
Hamiltonians are periodic in position but not in momen-
tum. Because of such unequal roles of position and mo-
mentum, the mapping of quantum transport phenomena
from position space to momentum space is typically non-
trivial but, where possible, may lead to important insights
and unforeseen opportunities. Anderson localization, for
instance, was first discovered as a seminal result of quan-
tum transport in position space. Its analog in momentum
space was later found to be behind the intriguing phenome-
non of ‘‘dynamical localization’’ [1,2]. This mapping
has stimulated fruitful studies of Anderson transition in
driven cold-atom systems [3]. As a second example,
ratchet transport, namely, directed transport under a zero
mean force in position space, has been mapped to momen-
tum space as well, leading to the finding of ratchet accel-
erators (RA) [4–6].

Energy-band topology is of fundamental interest to
studies of quantum transport in condensed-matter physics.
The issue to be addressed here is whether transport in
momentum space (i.e., acceleration) can be connected
with band structures due to momentum-space periodicity.
At first glance this sounds impossible because, with the
(nonrelativistic) kinetic energy being a quadratic function
of momentum, a realistic Hamiltonian is never a periodic
function of momentum. However, for systems periodically
driven by impulsive fields, the Floquet operator can still be
periodic in momentum, thus forming Floquet (quasi-
energy) bands. The topology of such Floquet bands then
provides a useful tool in characterizing topological phase
transitions in driven quantum systems [7]. How Floquet-
band topology is manifested in acceleration then becomes
an intriguing question.

Using a one-dimensional RA model inspired by existing
cold-atom experiments, we show in this work that the
Floquet bands, defined on a 2-torus (formed by one
Bloch phase and one experimentally tunable parameter)
may be characterized by Chern numbers. We then theo-
retically show that adiabatic transport in momentum space
can be quantized according to these topological numbers.
Unlike quantized adiabatic pumping in position space [8],
there does not exist a general (system-independent) flux
operator in momentum space and hence the found quanti-
zation is about a quantized net change of momentum
expectation value, rather than a pumping of particles
through a cross section. Finally, though adiabatic manipu-
lation of Floquet states is often considered to be subtle
[9,10], our numerical results confirm our theory and in-
dicate that quantized momentum-space transport can be
observed in a wide regime, by simply scanning one system
parameter in a relatively small number of discretized steps.
Breakdown of quantization in momentum-space transport
may then be considered as a diagnostic tool for detecting
nonadiabatic effects in Floquet state manipulation.
To physically realize the main physics we need three

ingredients: momentum-space periodicity, an experimen-
tally tunable periodic parameter and well-gapped
Floquet bands. To be specific we consider a RA model
[11], which is based on an atom-optics realization of a
double-kicked rotor system [12]. The RA Hamiltonian is

given by H¼p2

2 þKcosðqþ�ÞPn�ðt�nTÞþKcosðqÞ�P
n�ðt�nT�T0Þ, with a corresponding Floquet propaga-

tor [11] Ûð�Þ ¼ e�iðT�T0Þðp2=2@Þe�iðK=@Þ cosðqÞe�iT0ðp2=2@Þ�
e�iðK=@Þ cosðqþ�Þ, where all quantities are properly scaled
and hence in dimensionless units, q and p are canonical
coordinate and momentum operators for cold atoms, and
the � kicks are of period T, experimentally implemented
by two optical-lattice potentials mutually phase-shifted by
�, with equal strength K, and a time lag T0 < T [12]. Note
that later � will be adiabatically tuned. Because the poten-
tial function is periodic in q, momentum eigenstates take
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eigenvalues m@þ �@, where � 2 ½0; 1� is a conserved
quasimomentum variable and m is an integer. To yield a
Floquet operator periodic in momentum despite the p2=2
term in the Hamiltonian, we set � ¼ 0, which may be
approximately implemented by considering a Bose-
Einstein condensate whose coherence width spans across
many optical-lattice constants [6,13,14]. Effects of non-
zero � values will be discussed in Supplemental Material
[15]. If we now impose the quantum resonance condition
T@ ¼ 4� that has been one experimental subject
[6,13,14,16–18], we obtain an ‘‘on-resonance double-
kicked-rotor model’’ [20], with the Floquet propagator
reducing to

Û Rð�Þ ¼ eiðp2
e=2@eÞe�iðKe=@eÞ cosðqÞe�iðp2

e=2@eÞe�iðKe=@eÞ cosðqþ�Þ;
(1)

where @e � @T0 is an effective Planck constant, Ke�KT0,
and a rescaled momentum operator pe � T0p. From here
on, momentum exclusively refers to pe and we denote
momentum eigenstates by jmi, which has eigenvalue m@e

and is periodic in q with period 2�. Equation (1) indicates
that if @e ¼ 2�M=N, with M and N being integers, then

the Floquet operator ÛR is perfectly periodic in momentum
space with a period of N@e. According to Bloch’s theorem,
this momentum-space periodicity leads to Floquet bands.
Indeed, in the case of � ¼ 0, the corresponding Floquet
band structure [19] resembles Hofstadter’s butterfly [20],
with @e here identified as an analog of the magnetic flux. It
is such a remarkable resemblance (which also hints desir-
able band-gap features) that motivated us to connect the
topological aspects of the Floquet bands with momentum-
space transport.

The Floquet band structure may be characterized by
topological Chern numbers, provided that the bands are
defined on a 2-torus. To that end, we supplement the Bloch
phase parameter in momentum space with the periodic
parameter �. This procedure somewhat resonates with
recent efforts in identifying analogs of quantum Hall effect
in one-dimensional systems [21]. The eigenstate-

eigenvalue problem for ÛR now becomes

ÛRð�Þjc nð�;�Þi ¼ ei!nð�;�Þjc nð�;�Þi, where � 2
½0; 2�Þ is the Bloch phase in momentum space and

!nð�;�Þ is the eigenphase of ÛRð�Þ. For a fixed pair of
� and�, N eigenphases can be obtained, and scanning (�,
�) over ½0; 2�Þ � ½0; 2�Þ forms extended Floquet bands on
2-torus, so-named to distinguish them from the common
bands involving only the Bloch phase parameter �. As a
result n (1 � n � N) becomes an index of such bands
(with @e ¼ 2�M=N). The eigenstates jc nð�;�Þi are
chosen such that they are locally single-valued functions
of � and �, and periodic functions of �. Two computa-
tional examples of the Floquet bands !nð�;�Þ are de-
picted in Fig. 1 for N ¼ 3. It is seen that as the driving
strength K varies, the landscape of the bands changes.
Other calculations show that if @e ¼ 2�M=N with even

N, then there will be two (extended) bands touching each
other. For simplicity, here we consider only odd N so that
only accidental band collisions occur.
In Fig. 2 we present the Chern numbers (see its surface

integral expression below and see [15] for computational
details) for a 3-band case. It is seen that at some isolated
critical values of Ke, the Chern numbers jump, signaling
the presence of toplogical phase transitions in our RA
model. Indeed, the Chern numbers are invariant integers
with respect to smooth deformation of the bands and only
change discontinuously due to band collisions. Note that
mainly in the context of quantum-classical correspondence
in classically chaotic systems, Ref. [22] (see also Ref. [23])
formally studied the topological aspects of Floquet bands
defined on a 2-torus formed by Bloch phases in both
position space and momentum space. Our study is much
different because (i) this work is based on an explicit
physical implementation of momentum-space periodicity,
(ii) here the Bloch phase in position space is fixed at � ¼ 0
in theory (so as to obtain Hofstadter’s butterfly Floquet
spectrum), and (iii) our Floquet bands are defined on a 2-
torus that involves one experimental parameter, a key
starting point for our theory below.
We now seek the implications of the Floquet-band Chern

numbers by considering an adiabatic cycle during which �
increases from 0 to 2�. We first construct an initial state of
the following form,

j�nð� ¼ 0Þi ¼ 1

2�

Z 2�

0
d�jc nð�;� ¼ 0Þi; (2)

which represents an equal-weight superposition of all the
Floquet eigenstates of band n with � ¼ 0. This coherent
superposition state, which can be interpreted as a Wannier
function in momentum space, uniformly samples all the

FIG. 1 (color online). Floquet eigenphase !nð�;�Þ vs � and
� for (a) Ke ¼ 3@e and (b) Ke ¼ 4@e.
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FIG. 2. The Chern numbers of the 3 bands vs Ke=@e, for @e ¼
2�=3. For results of a 7-band case, see the Supplemental
Material [15].
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Bloch eigenstates with different values of � (but all with
� ¼ 0), with a profile localized in the momentum space.
Indeed, each eigenstate jc nð�;� ¼ 0Þi is infinitely ex-
tended in momentum space, but j�nð� ¼ 0Þi is normal-
ized to unity (localized in momentum space with Gaussian-
like tails in all the cases we studied). It is worth noting that
because each eigenstate jc nð�;� ¼ 0Þi is defined only up
to a global phase, one is free to choose an overall phase
convention of jc nð�;�Þi such that the superposition state
in momentum space tends to be well-localized, thus mak-
ing experimental preparation of the initial state easier.
Such states can be highly localized so long as K is not
too large. For example, the shown superposition state in
Fig. 3(a) mainly occupies one momentum eigenstate, with
small weights distributed over only a few nearby compo-
nents. Given previous experiments where momentum su-
perposition states in the same context were prepared [6],
states as shown in Fig. 3(a) should be reachable in
experiments.

Consider then an adiabatic change in �, through a dis-
cretized protocol �s ¼ 2�s=sf for ðs� 1ÞT � t < sT, so

that � completes one adiabatic cycle at t ¼ sfT [24].

Assuming adiabatic following of the Floquet states, the
state evolved from j�nð� ¼ 0Þi [see Eq. (2)] should stay as
a superposition state at t ¼ ðsTÞ�, with each component

still being the eigenstate of ÛRð�Þ, with � ¼ �s. That is, at
t ¼ ðsTÞ�, under adiabatic approximation the associated
time-evolving state of the system becomes

j�nð�sÞi ¼ 1

2�

Z 2�

0
d�jc nð�;�sÞiei�ð�;�sÞ; (3)

where �ð�;�sÞ is the sum of a dynamical phase and a
geometrical phase accumulated by the component starting
from jc nð�;� ¼ 0Þi. As a consequence of choosing
jc nð�;� ¼ 0Þi to be a periodic function of �, �ð�;�sÞ
is also necessarily periodic in �.
Next we evaluate hpeðsÞi � h�nð�sÞjpej�nð�sÞi,

namely, the momentum expectation value on the state
j�nð�sÞi. To proceed we first write Floquet eigenstates
jc nð�;�Þi as the product of two parts using the Bloch

theorem, namely, jc nð�;�Þi ¼ X̂ð�Þjunð�;�Þi, with

X̂ð�Þ � eipe�=N@e . We then define j �unð�;�Þi �P
N
m¼1 jmihmjunð�;�Þi. It can be shown that the

N-element state j �unð�;�Þi is an eigenstate of the following
N � N reduced Floquet matrix

hmj �Uð�;�Þjm0i � X1
l¼�1

hmjX̂yð�ÞÛRð�ÞX̂ð�Þjm0 þ lNi;

(4)

with m, m0 ¼ 1; � � � ; N. Lengthy but straightforward cal-
culations [15] then yield a compact expression for hpei,
i.e., hpei ¼ N

2�

R
2�
0 d�h �unð�;�sÞji@e @

@� j �unð�;�sÞi. To

compare this expectation value with its preceding value
for � ¼ �s�1, we consider a first-order perturbation theory
so as to rewrite j �unð�;�sÞi in terms of j �unð�;�s�1Þi.
Specifically, to the first order of �� � �s � �s�1 ¼
2�=sf, we have [15]

j �unð�;�sÞi ¼ j �unð�;�s�1Þi þ ��
XN

n0¼1;�n

h �un0 ð�;�s�1Þj @ �Uð�;�s�1Þ
@�s�1

j �unð�;�s�1Þi
ei!nð�;�s�1Þ � ei!n0 ð�;�s�1Þ j �un0 ð�;�s�1Þi: (5)

The change in momentum expectation value (denoted by
�hpeis) over the period from t ¼ ðs� 1ÞT to ðsTÞ� can
now be calculated to the first order of ��,

�hpeis ¼ 1

2�
N
Z 2�

0
d�

�
h �unð�;�sÞji@e @

@�
j �unð�;�sÞi

� h �unð�;�s�1Þji@e @

@�
j �unð�;�s�1Þi

�
: (6)

Further substituting Eq. (5) into Eq. (6) yields

�hpeis ¼ � N

2�

Z 2�

0
d�Bnð�;�sÞ��; (7)

where Bnð�;�Þ is identified as the Berry curvature

Bnð�;�Þ ¼ i
XN

n0¼1;�n

�h �unj @ �Uy
@� j �un0 ih �un0 j @ �U

@� j �uni
jei!n � ei!n0 j2 � c:c

�
;

(8)

with the explicit dependences of j �unð�;�Þi, !nð�;�Þ and
�Uð�;�Þ on � and � all suppressed for brevity.
The total change in momentum expectation value from

t ¼ 0 to ðsTÞ� is denoted by �pe
ðsÞ. Because �pe

ðsÞ ¼Ps
s0¼1

�hpeis0 , we have
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FIG. 3. Momentum distribution jhmj�3ð�Þij2 � j�ðmÞj2 [see
Eq. (2)] with Ke ¼ 2@e for t ¼ 0 in (a) and after a 100-period
adiabatic cycle in (b). Numbers shown in (a) are the phases of
each momentum component.
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�pe
ðsfÞ ¼ �M

Z 2�

0
d�

Z 2�

0
d�Bnð�;�Þ ¼ �2�MCn;

(9)

where we have used @e ¼ 2�M=N and Cn is exactly the
Chern number of the nth Floquet band, whose surface
integral expression is Cn ¼ 1

2�

R
2�
0 d�

R
2�
0 d�Bnð�;�Þ

[15]. Thus, Eq. (9) reveals that the net change in the
momentum expectation value over one adiabatic cycle of
� (starting from state j�nð� ¼ 0Þi) is quantized: it should
be proportional to the Chern number of the nth extended
Floquet band. This is our central theoretical result.

It is necessary to numerically verify our theoretical in-
sights above. Detailed results are shown in Fig. 4, again for
the case of @e ¼ 2�=3, with the adiabatic cycle lasting for
sf ¼ 100 periods (in this case, see also Fig. 3(b) for the

final momentum-space profile) or sf ¼ 1000 periods. First

of all, apart from the regime of Ke values near the critical
point Ke � 4:2@e (see Fig. 2), our numerical values of
�pe

ðsfÞ=ð�2�Þ almost perfectly match the Chern num-

bers. This is the case before or after the jumps of the
Chern numbers. The insets of both panels depict how
�pe

ðsÞ=ð�2�Þ builds up with time and eventually reaches

integer values that match the Chern numbers. In addition,

we have checked numerically that if we repeat the adia-
batic cycle, then the same quantized increase in momen-
tum expectation value is obtained [15]. We are thus
witnessing a clear quantization effect in acceleration as
an outcome of Floquet band topology. Note however, in the
vicinity of phase transition points, e.g., Ke=@e � 4:2,
momentum-space transport is no longer quantized. This
is because if a topological phase transition is about to
occur, then the associated band gaps are not large enough
to guarantee adiabaticity. Supporting this understanding, a
comparison between Figs. 4(a) and 4(b) shows that a
longer adiabatic cycle indeed significantly narrows down
the nonquantization window. Our numerical data suggest
that at least for the 3-band case here, if the driving field
strength Ke is far away from the phase transition points,
then only 50–100 kicking periods (depending on Ke) will
be needed to observe quantized acceleration. This is ex-
perimentally motivating, because Floquet state manipula-
tion itself is a topic of much theoretical interest [9,10]. The
robustness of this quantization against perturbations is also
examined in the Supplemental Material [15]. In short, for
the 3-band case above, the quantization effect can tolerate
about 0.5% uncertainty in @e and a nonzero � around 0.01,
which should be achievable in light of previous experi-
ments [13].
In conclusion, based on extended Floquet bands, we

have exposed topological phase transitions in driven quan-
tum systems and demonstrated how quantized adiabatic
transport in momentum space may emerge from Floquet
band topology. Numerical results based on a cold-atom-
based dynamical model suggest that future experimental
verification of our results is possible in terms of initial state
preparation, adiabatic cycle implementation, and the ro-
bustness of quantization.
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Chaudhry, Wayne Lawton, and Lakhaphat Lin Aigu for
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Singapore (Grant No. R-144-000-276-112).
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Szriftgiser, and J. C. Garreau, Phys. Rev. Lett. 101,
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