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The spin Peierls instability describes a structural transition of a crystal due to strong magnetic
interactions. Here, we demonstrate that cold Coulomb crystals of trapped ions provide an experimental
test bed in which to study this complex many-body problem and to access extreme regimes where the
instability is triggered by quantum fluctuations alone. We present a consistent analysis based on different
analytical and numerical methods, and we provide a detailed discussion of its experimental feasibility.
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The beauty of low-dimensional quantum many-body
systems (QMBS) lies in the complexity born of the combi-
nation of interactions, disorder, and quantum fluctuations.
However, these ingredients also conspire to render pertur-
bative techniques inefficient, posing thus a fundamental
challenge that has inspired the development of a variety of
analytical [1] and numerical [2] tools. Moreover, the syn-
thesis of low-dimensional materials has upgraded these
challenges from a theoretical endeavor into a discipline
that underlies some of the most exciting recent discoveries
in condensed-matter physics, such as the fractional
quantum Hall effect. The recent progress in the field of
atomic, molecular, and optical (AMO) physics presents a
promising alternative to these solid-state realizations of
low-dimensional QMBS. This field, which was originally
devoted to the study of light-matter interactions at the scale
of a single or few atoms, is progressively focusing on the
many-body regime in platforms such as neutral atoms in
optical lattices [3], cold Coulomb crystals of trapped ions
[4], or coupled cavity arrays [5]. The possibility of design-
ing the Hamiltonians microscopically to target various
many-body models yields a novel approach to explore
QMBS in a controlled fashion, the so-called ’quantum
simulations” (QSs) [6]. Some remarkable QSs are the
optical-lattice realization of Mott [7] and Anderson [§]
insulators, and the recent efforts toward a quantum-Hall
insulator [9]. More specific to this manuscript is the QS of
quantum magnetism [10,11].

In this Letter, we explore the capabilities of AMO setups
for the QS of interaction-mediated instabilities in QMBS.
The standard playground for these phenomena is the
so-called metal-insulator transition [12], which has been
investigated for a variety of transition-metal compounds in
the field of strongly correlated electrons. A paradigmatic
case 1s the one-dimensional metal, where either the
electron-electron interactions destabilize the metal
toward a superconducting state, or the electron-phonon
coupling leads to a charge-density-wave condensate [13].
The latter instability is a consequence of the so-called
“Peierls transition” [14], where the electron-phonon
interactions induce a periodic distortion of the ionic lattice
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and open an energy gap in the conduction band of the
metal. By virtue of the Jordan-Wigner transformation
[15], this phenomenon finds a magnetic counterpart: the
“spin Peierls transition” [16], whereby a spin-phonon-
coupled antiferromagnet (AFM) becomes unstable with
respect to a dimerization of the lattice. This creates an
alternating pattern of weak and strong spin interactions,
which in turn opens an energy gap in the spectrum of
collective excitations. We note that this instability has
turned out to be important for different compounds, such
as organic molecular crystals and transition-metal oxides
[17]. From a theoretical perspective, the complete under-
standing of such a complex many-body system, treating the
dynamics of the spins and phonons on the same footing, is
still considered to be an open problem [17,18]. From an
experimental perspective, the spin Peierls instabilities ob-
served so far [17,19] are limited to the Heisenberg model at
finite temperatures. Hence, the realization of a spin Peierls
transition only driven by quantum fluctuations, and also
capable of exploring different magnetic interactions, re-
mains an experimental challenge.

We hereby present a theoretical proposal for a trapped-
ion QS to tackle both problems. In particular, by building
on the recent experiments [ 10] on the quantum Ising model
(QIM) [20], we describe how to tailor a spin Peierls insta-
bility. We show that (i) the disordered paramagnet in a
linear ion chain changes into an ordered antiferromagnet in
a zigzag crystal [Figs. 1(a) and 1(b)], and (ii) the spin
Peierls transition can be driven only by the quantum fluc-
tuations introduced by the transverse field of the QIM. Let
us remark that, in comparison to neutral atoms in optical
lattices or coupled arrays of cavities, trapped ions seem to
be the best candidates to realize the spin Peierls quantum
simulator. One of the main reasons is that the underlying
lattice is not externally fixed, but rather results from the
self-assembling dynamics of the ions.

The system.—The advent of experimental techniques for
the confinement, cooling, and coherent manipulation of
atomic ions has recently been exploited for QS purposes
[4], in which the controlled increase of the number of
trapped ions yields a genuine bottom-up approach to the
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FIG. 1 (color online). Scheme of the spin Peierls instability:
(a) In the paramagnetic phase |P) = | 11 - - - 1), all the spins are
parallel to a transverse field g > g, along the z axis, and form an
ion string. (b) The antiferromagnetic phase g < g. corresponds
to the two Néel states [AFM)E{|+—---+ =), | —+---— +)}
where the spins are antiparallel in the x basis |+)=(|T)*
|1))/+/2, and form a zigzag ladder. (c) Laser wave vector k;
in the xy plane.

many-body regime. We consider a Coulomb gas formed by
an ensemble of N trapped ions of mass m and charge e,
which are described by the Hamiltonian

Wy 1 1 e’
HO =720-1Z + %(%p%a +§mwéri2a) +?Z|l’- —r.l

)

where {®,}4—,y,. are the effective trapping frequencies of
a linear Paul trap. Here, w, is the energy difference be-
tween two electronic ground states of the atomic structure
| T>ir | l>i, where 7 = 1 and 0'? = | Ti><Ti | — | li><li |. This
Hamiltonian must be complemented by the laser-ion inter-
action responsible for coupling the electronic and motional
degrees of freedom. We consider a pair of laser beams with
{@}=12, wave vectors {k;};=;2, and phases {¢;}—i,,
tuned close to the atomic transition. In the dipolar approxi-
mation, the laser-ion Hamiltonian is

Hy =Y (o] + Qo) cos(k; 1, — wit + ¢)), (2)
Li
where (), stands for the Rabi frequency of the transition,
and we have introduced the spin raising and lowering
operators o7 = | 1,)|; | = (o;")1. To proceed further, we
make some assumptions about the ion dynamics.

As evidenced in early experiments [21], a laser-cooled
ensemble of ions self-assembles in a Coulomb crystal,
which undergoes a series of structural phase transitions
(SPTs) as the trapping conditions are modified. In particu-
lar, when w, > w,, w, and the ratio «, = (0./,)* is
tuned across a critical value k. [22], the geometry of the
crystal changes from a linear string to a zigzag ladder. Note
that this SPT displays a rich phenomenology that has
recently revived interest in the subject [23-28]. Here,
we focus on the linear regime close to the critical point
K, < K., where the vibrations of the ions along each of the
confining axes are decoupled. We consider that the laser
wave vectors in (2) lie within the xy plane [Fig. 1(c)], k; =
ke, + k; ey, such that their frequencies are tuned close to

the resonance of the vibrational sidebands w; = wy = w,.
Since these sidebands correspond to the strongly confining
y axis, w, > 0, o, the coupling of the laser beams to the
x and z vibrational modes becomes far off-resonant and can
be neglected. Let us remark that this argument has one
possible exception: there might be a vibrational soft mode
where the phonons condense at the SPT. As identified in
Ref. [23], this soft mode corresponds precisely to the
zigzag mode along the x axis, which affects the laser-ion
coupling (2) regardless of the soft-mode frequency [17].

The above considerations allow us to extract the
relevant part of the Hamiltonian (1) after introducing
r; = [(e, + g, e, + g€, + g;.e,), where 2 are the
equilibrium positions in units of I, = (¢?/mw?)'/3, and
qio are the small displacements along the corresponding
axes. Following Ref. [27], the displacements along the
x axis have been adapted to the aforementioned zigzag
mode g;, = (—1)'8¢,,, such that 8¢, is a smooth function
that allows a gradient expansion. The Hamiltonian then
becomes Hy = 1Y ,wo0 + H, + H,, where

ml% 2 rx 2 u)‘( 4 Kfj 2
HX:Z( D) (atSQix) +515qix+zl6qix)+§j7(aj6q”) ’
, (3)
mi2 7 K.
Hy=Z<—z(atqiy)2+_lq12y)+zl(ajqiy)2’
N2 2 7 2
and we have introduced the gradient 9;f; = f; — f;. In
these expressions, the vibrational couplings are

1 3
r=matt(1-2660) u=mott(Grs)
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along the x axis, expressed in terms of the inhomogeneous
function {;(n) = ¥, [(=1)" = (=1)']"" 1z — 22" with
n € Z, and the Kronecker delta &,,,. In the limit of tight
confinement along the y axis, k, = (#,/w,)? < 1, we find

272
S 212 gy _ moylk,
r = mw?l?, K}, = 2
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to a set of dipolarly coupled harmonic oscillators, whereas
H, describes a set of nearest-neighbor-coupled anharmonic
oscillators.

The coupled harmonic oscillators (3) are diagonalized,
yielding a set of collective modes with frequencies w,,
whose excitations, created and annihilated by a,J{, a,, shall
be referred to as the “hard phonons.” This yields the
quadratic Hamiltonian H, = znwnalan. By setting the
laser frequencies to the red and blue vibrational sidebands
of the atomic transition, w; = wy— w, and w, = W) + w,,
we express the laser-ion interaction (2) as [17]

H, = Z(f{neierqi'*a';ran + Fbeitrangtal + He), (5)
in

Accordingly, H, corresponds

where we have introduced the sideband coupling strengths
j:irn = éﬂlnlnjvlineld’li len = éQZ'r’ZnMinelqszi the
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Lamb-Dicke parameters 7y, = k;,/2mw, < 1, the
normal-mode amplitudes M,,, and 6, = kI, 0, = ky,[..

In contrast, the anharmonic oscillators (3) correspond to
an inhomogeneous version of the ¢* model on a lattice,
namely, an interacting scalar field theory that cannot be
exactly diagonalized. This model yields a SPT that can be
understood as follows. The regime r} > 0, u;f > 0, corre-
sponding to trapping-frequency ratios fulfilling «, <
K.; = 2/£;(3), yields the linear ion configuration, which
respects the Z, symmetry of the model. Conversely, when
rf <0, uj >0 for k, > k_;, the ions self-organize in the
the zigzag ladder corresponding to the broken-symmetry
phase, whereby (8¢q;,) # 0 signals the condensation of the
“soft phonons” in the zigzag mode. We note that the ¢*
model fulfills rj # rj, which leads to an inhomogeneous
SPT setting at the center of the trap [25]. As outlined
previously, when the soft phonons condense (8¢;,) # O,
there is a nontrivial effect in the laser-ion Hamiltonian (5)
that must be considered. We show below that, in this case,
the hard phonons mediate a spin-spin interaction, whereas
the soft condensed phonons are responsible for a dimeri-
zation of the coupling strengths. This condensation turns
out to be the key ingredient for a zero-temperature spin
Peierls transition. Let us also emphasize that this model,
which is a cornerstone in the microscopic description of
SPTs [29], has not been combined with a spin Peierls
distortion, to the best of our knowledge.

Dimerized quantum spin model.—The spin phonon
model in Egs. (3) and (5) yields an extremely complex
QMBS. We analyze the onset of a spin Peierls quantum
phase transition by performing a series of simplifications.
First, we neglect the time-dependence of the zigzag
distortion (3). This adiabatic approximation, which is stan-
dard in the treatment of spin Peierls phenomena [16], is
justified if the zigzag mode is much slower than the effec-
tive spin dynamics, which is valid close to the critical
point. Hence, we treat the SPT classically by setting ¢;, =
(—1)8q;,) self-consistently. Second, we consider a ho-
mogeneous zigzag distortion, which amounts to neglecting
the nearest-neighbor couplings in Eq. (3). Third, when the
coupling of the spins to the hard phonons (5) is weak, they
can be integrated out, yielding an effective quantum spin
model. In the linear string, this process leads to a dipolar
version of the celebrated QIM [30], whereas the frustrated
J1-J, QIM arises in the zigzag configuration [31]. In this
Letter, we show that, in the vicinity of the critical point
K, = K., the quantum spin model corresponds to a dipolar
QIM with additional spin-spin couplings whose sign alter-
nates periodically when the soft phonons condense.

In analogy to the Sdgrensen-Mglmer gates [32], we
consider that the red- and blue-sideband terms (5) have
opposite detunings 6, = —§,, =: 6,, where §,,, = w; —
(wg — w,) and b,, = w, — (wy + w,). Also, their Rabi
frequencies fulfill Q;k7, = Q,k3, and attain values such
that | F7 | = Ij-"ibnl < 8, In this limit, the sidebands (5)

create a virtual hard phonon that is then reabsorbed by a
distant ion, leading thus to the aforementioned effective
spin-spin interaction. The above constraints are respon-
sible for the destructive interference of the processes where
a phonon is created and then reabsorbed by the same ion, a
crucial property that underlies the availability of an effec-
tive spin Hamiltonian that is decoupled from the hard
phonons. Finally, by considering that the pair of laser
beams are counterpropagating k; = —k, =: k, which
implies that the parameters are 6, = —6, =: 0, it is
possible to obtain the spin Hamiltonian [17]

Yy Y Y Xy y yx -y
Hyr = g(mafa; + 1ol + I ool + 1ol oY),
7)

where the coupling strengths are

JiF = Jifcos[0(qi — qjx)] + cos[0(qic + qjx) + d-1},
J3 = Jif{cos[0(q; — cos[0(q;x + qj) + d-1},
I = JAsin[0(q, — ;0] — sin[0(q + g, + 6T
Jl},x = —J;{sin[0(q;y — q;,)] + sin[0(q; + ) + ST},

Q/x)] -

and the relative laser phase is ¢_ = ¢; — ¢2 Here the
spin-spin couplings are J;; = ﬁ, Jeir = ILgIS‘ZK’ (1+
i %

%)wy, where we made an expansion for x, <1 and
introduced the bare detuning 6,=w;—(wy— )=
—w, +(wy+ w,), the bare Lamb-Dicke parameter
ny =k, /2mw,, and the common Rabi frequency ; =
Q, = Q,. Hence, the spin-phonon interaction leads to a
generalization of the famous XY quantum spin model [33].
In order to obtain the promised dimerized spin model,
one has to phase-lock the laser beams ¢_ = 0, and con-
sider the critical region where the zigzag distortion is
small enough 6(8g;) < 1. Then, we can Taylor-expand
and obtain an antiferromagnetic Ising interaction charac-
terized by Ji¥=2J; and J;; =0, but also J =
2J;/(=1)7*16(8¢q,,) = lex, which give rise to the quantum
dimerization [i.e., a magnetic interaction that does not
commute with the Ising coupling, and alternates
between a ferromagnetic-antiferromagnetic sign J;, J3; o
(—1)i*1]. Also, we consider a transverse field 4 that can be
obtained from a microwave that is far off-resonant with
respect to the atomic transition. Altogether, the spin
Hamiltonian becomes Hex = Higng + Hgimer, Where

ff
Higing = Z e ~0|3 hszw
1:#]
—1)* —1)i+!
Hdimerzz eff( ) |3§] 0_;.(0_};_’_ eff( ) gl O'yO‘)-C,

i#j |Z _ZO |Z _ZO|3 i
and we have introduced &; = #(8¢;) < 1. Let us remark
that the couplings of the dimerization Hamiltonian depend

on the condensation of the soft phonons (8¢;,), which is in
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turn described by the ¢* theory. Below, we show how this
model leads to the desired spin Peierls instability.

Spin Peierls quantum phase transition.—To demonstrate
that the introduced scheme yields a QS of the spin Peierls
instability, we simplify the model by neglecting its long-
range interactions and inhomogeneities. The spin model
can be solved by a Jordan-Wigner transformation with
&= &V i, later used as input to the ¢* model self-
consistently. For ¢ < 1, the ground-state energy is

2JN

where J >0 is the nearest-neighbor antiferromagnetic
coupling, g = h/J, and we have introduced a monotoni-
cally decreasing positive-definite function ¢(g) that de-
pends on the complete elliptic integrals (see Supplemental
Material [17]). We have compared this expression to nu-
merical density matrix renormalization group (DMRG)
[34] calculations [see Fig. 2(a) and Supplemental
Material [17]], which support our claim for small dimeri-
zations. The above lowering of the ground-state energy
pinpoints the instability toward the lattice distortion. Also,
the spectrum of magnetic excitations displays the follow-

ing energy gap A o |g —4/1 + 4&?%|. With respect to the
paramagnetic-to-antiferromagnetic quantum phase transi-
tion of the standard QIM at g, = 1 [20], the dimerization
breaks the self-duality of the model leading to

ge = 8(€) = A1 +4&% (N

In Fig. 2(b), we corroborate this flow of the critical point
from the divergence of the magnetic susceptibility y,, «
/\7m = _aZEg/agZ.

Therefore, the paramagnet close to g, < g = g, will be
unstable toward the antiferromagnet if the lowering of the
energy (6) compensates the structural change. For self-
consistency, we incorporate this energy change in the ¢*
model. Since E,(§) — E,(0) = 3 .04, it becomes clear
how to modify the parameters of (4). In analogy to the
magnetic phase transition, the SPT is also displaced, but
toward a smaller value:

E,l_\o\o o ESMRG ESA{)

o — B3P

E,/JN
1
Xm/JN

o

FIG. 2 (color online). Spin Peierls transition: (a) Scaling
of the ground-state energy with the lattice dimerization.
(b) Displacement of the critical point calculated from the diver-
gence of the magnetic susceptibility.

®)

Therefore, the linear ion string close to criticality k.; =
K, < K.; is unstable toward the zigzag phase.

We have thus proved our claim (i) that the paramagnetic
phase in the linear ion string will be unstable toward the
antiferromagnetic zigzag ladder (Fig. 1). Moreover, by
fixing the ratio of the trapping frequencies in the linear
regime, k, < K.;, we can drive both the structural and the
magnetic phase transitions by only modifying the trans-
verse magnetic field g across g.. The necessary condition
for the trapping frequencies is
_UOeE)
k!t = 560)]
Hence, the zigzag AFM g < g. transforms onto a linear
paramagnet by increasing g > g.. This supports our claim
(i1) that the spin Peierls transition can be driven by quan-
tum fluctuations alone.

Experimental considerations.—We focus on >Mg*
and select two hyperfine levels for the spin states | 1;) =
|F =2, mp =2),|1;) =13, 3), such that the resonance fre-
quency in (1) is wy/27 = 1.8 GHz. We considera N = 30
ion register with trapping frequencies w./27 =~ 300 kHz,
w,/2m ~7MHz, and w,/27 = 10 MHz. The phase-
locked laser beams leading to (2) are blue-detuned
8,/2m = 1 MHz, such that the two-photon Rabi frequen-
cies are ()} /27 = 1 MHz, and the Lamb-Dicke parameter
1, = 0.2. With these values, the required constraints de-
tailed in the Supplemental Material [17] are fulfilled, and
we obtain a nearest-neighbor spin coupling with the typical
strength J = 2J.4/12? — 20> = 1 kHz observed in ex-
periments [10]. By considering these parameters, the con-
dition (9) imposes the following constraint over the
anisotropy (k.; — K,)/k.; ~ 10703, which requires the
trap frequency to be sufficiently close to the structural
phase transition. In practice, the soft radial trapping
frequency must be controlled with an accuracy of
Aw, ~ 107%w, = 1-10 Hz, which coincides with the pre-
cision required to observe quantum effects in the SPT [27].
Provided that this precision is achieved in the experiments,
one could optically pump the linear ion register to
|#(0)) = ®| 1;) and then study its adiabatic evolution to-
wards the AFM phase as the transverse field g(7) is de-
creased. The corresponding AFM order can be measured
by fluorescence techniques, whereas the structural phase
transition could be directly observed in a CCD camera, or
inferred from spectroscopy of the vibrational modes. A
simpler experiment would require setting the anisotropy
parameter within the instability regime given by the dis-
placements in Egs. (7) and (8), which leads to («.; — )/
Ke; ~ n3 =~ 1072 and h/J = 10~2. The linear paramagnet
would be directly unstable toward the zigzag AFM without
adiabatically tuning the transverse field g(z) and the de-
manding constraints on the trap frequencies.

Kei ™ Kei = (51‘(3) + 2 0290(8))1‘

2 mellr w

212 _
mwil; =

®
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Conclusions and outlook.—A sensible QS must address
questions that are difficult to assess by other analytical or
numerical methods. In this Letter, we have proposed a
trapped-ion QS that fulfills this requirement. In particular,
in the regime where nonadiabatic effects of the zigzag
distortion become relevant, the complexity of the many-
body model in Egs. (3) and (5) compromises the efficiency
of existing numerical methods. Also, this QS may address
the effects of the inhomogeneities, the long-range dipolar
tail of the spin-spin interactions, and the dynamics across
such a magnetic structural quantum phase transition. We
emphasize that the incorporation of all these effects make
our QS of the utmost interest, which may also find an
application in the context of other Wigner crystals [35],
such as electrons in quantum wires or liquid helium.

This work was supported by HIP, PICC, and the
Alexander von Humboldt Foundation. We acknowledge
useful discussions with J. Almeida and S. Montangero.
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