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Particulate packings in 3D are used to study the effects of compression and polydispersity on the

geometry of the tiling in these systems. We find that the dependence of the neighbor number on cell size is

quasilinear in the monodisperse case and becomes nonlinear above a threshold polydispersity, indepen-

dent of the method of creation of the tiling. These size-topology relations can be described by a simple

analytical theory, which quantifies the effects of positional disorder in the monodisperse case and those of

size disorder in the polydisperse case and is applicable in two and three dimensions. The theory thus gives

a unifying framework for a wide range of amorphous systems, ranging from biological tissues, foams, and

bidisperse disks to compressed emulsions and granular matter.
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Systems that tile space range from tessellations of par-
ticulate packings [1–4] to soap foams [5–10], biological
tissues [11–13], and even mathematically generated tilings
[14]. In each of these systems, the size distribution, topol-
ogy, and dimensionality of the constituent cells determine
the relation between the number of neighboring cells and
the cell size [15,16]. For example, this relationship is
linear in the case of the empirical Lewis law [11] observed
in epithelial tissues from organisms as diverse as the
Drosophila wing, Xenopus tadpole tail, Hydra vulgaris,
or the cucumber epidermis, but it follows a power law in
the case of foam tilings [9,10,17]. While many theoretical
approaches have been devised to predict a specific size-
topology trend [17–22], none have been able to explain the
origin of the discrepancy between systems or quantify the
limits of validity of different size-topology relations.
Another open question is how these relations are affected
by the dimensionality of the system, given that structural
information inside 3D tilings is difficult to access. To this
end, we confocally image transparent, fluorescent particu-
late packings ranging from monodisperse poly-methyl-
methacrylate (PMMA) particles to compressed emulsion
droplets with varying polydispersity. The individual cells
in the mosaic are constructed either by tessellating space
around spheres using the navigation map [23,24] or by
physical compression of the particles themselves. We
find that the monodisperse particles follow a different
size-topology relation to the polydisperse emulsions, inde-
pendent of the method of creation of the tiling.

Building on the work in [22], we derive analytical results
from simplified versions of the granocentric model [1,25]
for the size-topology relations to explain the diverse data in
2D and in 3D. This idealized model is based on creating
individual cells in the tiling by surrounding a central

particle with a first shell of neighbors. Variations in the
particle sizes introduce disorder arising from polydisper-
sity, while fluctuations in the surface-to-surface distance
between the neighbors mimic positional disorder in the
packing. This model allows us to decouple the two effects
and distinguish between systems where the particles are all
of the same or similar size but the distance between them
can vary (i.e. positional disorder) and those where the size-
distribution of the particles (i.e., polydispersity) dominates
the disorder in the tiling. We find that the analytical pre-
dictions of the model capture experimental trends in sys-
tems as diverse as biological tissues, bubbles, droplets, and
grains and, thus, classify them according to the dominant
source of disorder in their packing.
Figure 1 depicts examples of amorphous tilings, ranging

from epithelial cells and bidisperse disks in 2D to confocal
slices of compressed and relaxed emulsions in 3D. The
emulsion packings are visualized in 3D by refractive index
matching the droplets with the continuous phase and dying
the particles using fluorescent Nile Red dye. The image
analysis, based on a Fourier transform algorithm, identifies
the particle positions and radii [26]. Note that the cells are
either defined by the space filling of deformable particles
as in Figs. 1(a) and 1(c) or by the navigation map tessella-
tion of space [23,24] around circular or spherical particles
as shown in Figs. 1(b) and 1(d). The navigation map
tessellation attributes each point in space to the particle
whose surface is closest to it. In the monodisperse case, this
method reduces to the Voronoi tessellation. In the polydis-
perse case, this method results in individual cell volumes
separated by hyperbolic surfaces. In either case, the num-
ber of neighbors n is defined as the number of interfaces
that a cell shares with other cells. In 2D, the cellular tissues
and jammed disks follow the linear law proposed by Lewis,

PRL 108, 268001 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending
29 JUNE 2012

0031-9007=12=108(26)=268001(5) 268001-1 � 2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.108.268001


while the foam data follow a nonlinear increase with the
cell area, as shown in Fig. 2. A similar distinction is
observed for the dependence of the average cell volume
V on neighbor number in packings of monodisperse
PMMA particles and polydisperse emulsions in 3D, as
shown in Fig. 3(a). Interestingly, varying the level of
polydispersity p (where p is the coefficient of variation
of the droplet radii) from 11% to 42% in 3D packings of
emulsion droplets does not change the nonlinear shape of
the relationship between neighbor number and cell
volume. In addition, compressing the deformable droplets
by centrifugation into a biliquid foam structure does not
significantly change the size-topology relation. This obser-
vation suggests that it is appropriate to use a theory for
packings of spherical particles and apply the results to
space-filling systems.

We, therefore, apply the granocentric model for packing
particles [25] to our data. This model maps the packing
process onto a first passage problem of a one-dimensional
random walk in solid angle space by adding the sold angle
contributions of the first shell of neighbors of a given
particle. A second random process chooses some of these
neighbors to be in contact with the central particle to
ensure mechanical stability, while the others are placed a
given surface-to-surface distance away. This model is ca-
pable of describing local fluctuations in the neighbor

number and volume of cells within jammed packings of
hard spheres with any size distribution. As shown in Figs. 2
and 3 by the dashed lines, the model is in excellent agree-
ment with the distinctive differences between the size-
topology relations in monodisperse and polydisperse
packings, both in 2D and in 3D. The model, however,
does not give systematic insight into the origins of the
discrepancy, nor into the remarkable universal character
of the size-topology relation above a certain critical poly-
dispersity (Figs. 2 and 3). Therefore, we introduce a mean-
field approximation of the granocentric model, allowing us
to decouple polydispersity and positional effects. We as-
sume all neighbors of a given central particle of radius rc
are of the same size, �r, corresponding to the average of
the size distribution in the packing. In the polydisperse
case, we vary rc to obtain the effect of the particle size on
the number of neighbors. Positional disorder is neglected
in this case because all the particles are assumed to be in
contact with the central particle. In the case of monodis-
perse packing (where rc ¼ �r), we place all the neighbors
in a given cell at a distance ��r away from the surface of
the center particle. We then vary � to analyze the effect of
positional disorder. In this way, we isolate the effect of two
sources of randomness found in packings and deduce their
influence on the cell area or volume independently.
The relation between the number of neighbors n and

either rc=�r or � follows from dividing the total available
solid angle,�max, around the central particle, among these
n neighbors. A simple calculation shows that in 3D

n ¼ �max

2�

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ �Þ2 � 1
p

1þ �

��1
(1)

where � ¼ rc=�r for size disorder and � ¼ 1þ � for
positional disorder. In this expression, �max is adjusted
so that the average number of neighbors hni takes a given
value, which is close to 14 for many random particulate
packings. This value has been shown to be insensitive to
polydispersity [1,27] and the interaction potential between

FIG. 2 (color online). For 2D systems, the relationship be-
tween the average area of cells with n neighboring cells and n
is shown. Lewis’ cucumber data and law A=hAi ¼ 1þ
0:246ðn� 6Þ [11]. Bidisperse discs with size ratio 1.22 chosen
to avoid crystallization [30].

FIG. 1 (color online). Tilings of space-filling systems and
tessellations of particulate packings. In 2D, epithelial tissue of
MDCK cells stained with GFP fused E-cadherin (scale bar ¼
10 �m) shown in (a) is compared with a random packing of
bidisperse disks segmented by the navigation map shown in (b)
(scale bar ¼ 2:2 cm). The 2D confocal images in (c) and (d)
represent slices of the 3D tessellations of spheres achieved by the
compression of polydisperse droplets (p ¼ 22%) and the tessel-
lation of the undeformed droplets, respectively (scale bar ¼
10 �m).
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the particles [2]. In principle, hni must be calculated
by averaging (1) over the particle size distribution of
rc or over the distribution of �. We can bypass this
calculation by setting � ¼ 1 in (1), corresponding to the
case of equal-sized spheres that are touching each
other, to obtain the leading order term of hni. This gives
�max � ð2� ffiffiffi

3
p Þ�hni � 3:75� for hni ¼ 14.

Following the prescription of the granocentric model,
we approximate the cell volume generated by the naviga-
tion map tessellation by having each neighbor contribute
the volume of a conic section with a hyperbolic cap defined
by the points equidistant from both particle surfaces [28].
Summing over these neighbor contributions, as well as the
central particle volume, then gives the total volume of the
cell. With size disorder where � ¼ rc=�r, the resulting cell
volume, VP, for polydisperse packings is

VP ¼ 4�r3c½2n� ð1þ �Þ�
6½n� ð1þ �Þ�2 ; (2)

and with positional disorder where � ¼ 1þ �, the result-
ing cell volume, VM, for monodisperse packings is

VM ¼ 4�r3cð1þ �Þ3nðn� 1Þ
24ðn� 2Þ2 : (3)

Using (1) to express � in terms of n in (2) gives an
analytical prediction for the volume of cells with n neigh-
bors in a polydisperse packing,

~VP ¼
�
2n

aðnÞ � 1

�
3
�
a2ðnÞ � aðnÞ
hni2 � hni

�� hni � 2

aðnÞ � 2

�
2
; (4)

where ~VP � VP=hVi is the cell volume normalized to the

average volume, and aðnÞ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2khnin� k2hni2p

with

k ¼ 1� ffiffiffi
3

p
=2. The relation in (4) with hni ¼ 14, which

varies little for any realistic hni, agrees well with the
compressed and relaxed emulsion data with a wide range
of polydispersities, as shown in Fig. 3(a). This agreement
implies that size-induced disorder captured by the model
dominates over the positional disorder also present in these
experimental packings. The universality among a range of
polydisperisities arises because polydispersity only affects
the range of n through the parameter �, but not the func-
tional relationship between VP and n, which is fixed after
the elimination of �. While previous theoretical work had
conjectured ~VP / n� with � ¼ 3 [29] and empirical data
from foam simulations were well described by � � 2:25
[7], our theory indicates that this relation is more complex
than a power law. In fact, a useful simplified relation
can be obtained through expansion of (4) in

ffiffiffi
n

p
, which

for hni ¼ 14 gives to excellent approximation for all n,
~VP � 0:12n3=2 � 0:55nþ 0:94n1=2 � 0:55, with an intui-

tive asymptotic scaling of ~VP / n3=2 as n ! 1.
Similarly, we can eliminate � between (1) and (3) to

obtain a relationship between cell volume and neighbor
number in the positional disorder case. Since in monodis-
perse packings the range of n is very restricted (typically
11 � n � 18), a linear expansion around n ¼ hni is suffi-
ciently accurate and gives

~VM ¼ 1þ gMðn� hniÞ; (5)

where the slope gM varies only weakly with hni and, for
hni ¼ 14, is � 0:081. Thus, for monodisperse packings,
~VM is much less sensitive to n, as shown by the red solid
line in Fig. 3(a). The analytical approach using only one
value of � per cell does not model the full complexity of
contacting and non-contacting neighbors (unlike the gran-
ocentric model [25]). However, the sharp distinction be-
tween monodisperse and polydisperse systems is captured
within the present theory and identifies its cause as either
positional- or size-disorder.
The same procedure can be used to describe both kinds

of disorder in 2D tilings, replacing solid angles by angles
and polyhedral cells by polygons. The area-neighbor rela-
tionship for polydisperse tilings is

~AP ¼ nffiffiffi
3

p csc

�
2�

n

��
sin

�
�

n

�
� 1

�
2

(6)

FIG. 3 (color online). For 3D systems, (a) depicts the relation-
ship between the average volume and n. This is plotted on a log-
log scale in the inset, where the blue dotted line is the power-law
fit (slope of 2.262) to the random 3D foam from Kraynik et. al
[7]. (b) The relationship between widths of neighbor-number and
cell-volume distributions. Each point represents one experiment;
the legend indicates additional experiments not shown in (a).
The dashed line is obtained from the granocentric model [25]
by varying the particle size distribution from monodisperse
(p ¼ 0%) to 22% polydispersity.
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and for monodisperse tilings is

~AM ¼ n

4
ffiffiffi
3

p csc

�
2�

n

�
� 1þ hMðn� 6Þ; (7)

where ~AM;P � A=hAi is the cell area normalized to the

average area. Employing a linear expansion around
n ¼ hni gives a linear relationship between the area and
neighbor number with hM � 0:267, which may provide an
explanation for the empirical Lewis law. Indeed, in Fig. 2
we show a good agreement between the positional disorder
prediction in (7) and the Lewis law, as well as their success
in fitting data from biological cells and disordered pack-
ings of disks. On the other hand, the 2D polydisperse
theory, Eq. (6), aligns well with the theoretical prediction
of [22] and foam data from [9]. The empirical discrepancy
between the two classes of experimental systems can thus
be explained through different dominant sources of disor-
der in these systems.

Another general feature observed in 2D tilings and
packings is the relationship between the widths of the
distributions of neighbors and local cell volumes, quanti-
fied by their respective coefficients of variation cðnÞ and
cð ~VÞ [10,17,22]. We find that the effects of positional and
size disorder on this relationship can be captured quanti-
tatively from the slope gM in Eq. (5) and from an analogous
linearization of Eq. (4) about hni to obtain the slope gP.
The relationships are

cð ~VPÞ ¼ hnigPcðnÞ; cð ~VMÞ ¼ hnigMcðnÞ; (8)

where for the typical hni ¼ 14, we obtain hnigP � 2:63
and hnigM � 1:14, as shown in Fig. 3(b). These slopes are
insensitive to hni, varying by less than 2% in the polydis-
perse case and less than 8% in the monodisperse case, in
the range 12< hni< 16. Note that for sphere packings, the
values of cð ~VPÞ can always be directly related to the
polydispersity p by eliminating n from (1) and (2) in favor
of �. In this case, a linearization obtains

cð ~VPÞ ¼
�
1

2
þ 1ffiffiffi

3
p

�
p; (9)

establishing a direct connection with the particle size
distribution. Note, however, that the p values in the
figure legends are directly measured in the experiments.
Figure 3(b) shows that all experimental data are consistent
with either of the two theoretical lines: packings at or
above 11% polydispersity follow the steeper slope of the
size disorder theory, while those that are quasi or purely
monodisperse are in good agreement with the positional
disorder theory. This demonstrates that, in contrast to the
2D case [22], a linearization of (4) is sufficient for an
accurate description of the experimental data via the
size-topology relation (8). While the simplified polydis-
perse theory predicts crystallization as polydispersity is
removed, the full granocentric model captures the cross-
over from the polydisperse to the monodisperse line, as

shown by the dashed line in Fig. 3(b). Indeed, monodis-
perse 3D systems do not crystallize without thermalization,
but rather retain a disordered configuration known as ran-
dom close packing [27].
In this Letter, we demonstrate that four classes of space-

tiling systems, namely biological tissues, foams, com-
pressed emulsions and granular matter, show topological
characteristics that can be categorized by the dominant
source of disorder through a mean-field approach to the
granocentric model. Moreover, the theoretical approach
allows any tiling of cells to bemapped onto a corresponding
packing of mechanically stable spheres/disks with a statis-
tically equivalent set of navigation map cells. The model,
thus, classifies cucumber tissues, quasimonodisperse disks,
and PMMA packings as systems in which positional dis-
order dominates the tiling and foams and emulsions as size
disorder dominated tilings. This classification is consistent
with the fact that cell size is highly regulated in biological
systems, while foams and emulsions typically result from
dynamical processes that induce a broad distribution of
sizes through e.g. fragmentation, coalescence or coarsen-
ing. The success of a purely geometric model in capturing
the topology of diverse systems may shed light on the
underlying mechanisms leading to their creation.
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