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Space-charge-limited currents are important in energy devices such as solar cells and light-emitting

diodes, but the available theory from the 1950s finds it necessary to postulate defect states that are

distributed in energy in order to match data. Here, we show that this postulate is not warranted. Instead, we

demonstrate that dopants and the concomitant Frenkel effect, which have been neglected, control the

shape of measured current-voltage characteristics. We also account for the observed peak in the noise

power. The new theory can anchor efforts to develop experimental techniques to measure deep-trap levels.
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Energy-conversion devices such as solar cells and light-
emitting diodes rely on carrier injection, whose uncompen-
sated charge and the concomitant push-back electrostatic
field give rise to space-charge-limited currents (SCLCs)
[1–5]. For defect-free semiconductors, such currents were
predicted to exhibit a quadratic dependence on the voltage
by Mott and Gurney [6]. Early data [7,8], however, exhib-
ited an initial slow rise followed by a sharp, power-law rise
at a critical voltage V0, with the Mott-Gurney limit attained
asymptotically. Rose [8] viewed the slow rise as an Ohmic
current by available carriers and attributed the sharp rise to
deep-level defects: injected carriers get trapped and gen-
erate a push-back voltage until all traps are filled (trap-
filled limit or TFL); at the TFL, the push-back voltage is
overcome and the current rises vertically. The Mott-
Gurney limit is approached at higher voltages when the
traps have no further effect. In developing a pertinent
theory, Rose and later Lampert [9,10] concluded that the
only way to get a power law instead of vertical rise in the
current is to postulate an exponential tail of defect density
of states (DOS). Since then, data are typically fitted piece-
meal in the three regions, yielding limited useful informa-
tion. In 2005, measurements of noise power spectrum in
organic semiconductors [11] found a peak at the TFL that
cannot be explained by the Lampert theory. Very recently,
it was demonstrated [12] that the presence of dopants can
have a large effect on SCLCs because dopant electrons can
fill the deep traps, but a pertinent theory is lacking. For
undoped materials, a Gaussian distribution of defect states
was proposed [13] as an alternative to the exponential tail.

In this Letter, we demonstrate that the full inclusion of
dopants and the interplay between dopants and traps,
which controls the power-law rise, remove the need to
postulate an exponential or Gaussian defect DOS (such
distributions may of course exist in materials like poly-
mers). The underlying physics is simple and elegant.

Dopant energy levels are by definition above the trap
levels. Because dopant densities must be smaller than those
of the deep traps for SCLCs to occur [14], most dopant
electrons initially occupy trap levels, whereby the Ohmic
rise is controlled by thermal excitation from the deep traps.
The sharp rise is initiated when all deep traps are filled, as
much as is allowed by local thermal equilibration, but the
dopant levels are now a mitigating effect: the power-law
rise is controlled by the dopant energy level [12] and the
Frenkel effect [15], namely the lowering of the ionization
energy by the electric field, which is screened by the free
carriers [16]. The power-law rise is finished when all traps
and dopants are filled, as allowed by thermal equilibration,
and is followed by the Mott-Gurney regime. For samples
with high trap densities, trap-to-dopant hops may dominate
the initial Ohmic-like rise of the current, suppressing the
noise power at low voltages [11]. The detailed derivation,
parameters for fitting experiments, and a FORTRAN code,
are provided in the Supplemental Material [17].
The basic elements of the theory are quite simple. We

consider a homogeneous material with concentrations ND

of donors and Nt of deep traps with Nt > ND. At a given
temperature T and external voltage V, the electrostatic
potential � obeys the Poisson equation,

r2� ¼ � e

��0
ðnþ nt � Nþ

D � pÞ; (1)

where n is the electron carrier density, nt is the density of
trapped electrons, Nþ

D is the density of ionized donors, and
p is the free hole density; the electron current is,

Jn ¼ �nðenE þ kTrnÞ; (2)

where E ¼ �r�, and �n is the electron mobility, which
depends on n, Nþ

D , and T. All quantities except T and J
depend on position x, and

R
L
0 EðxÞdx ¼ V, where L is the

length of the sample. There is a corresponding equation for
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the hole current and the relation np ¼ n2i , where ni is the
intrinsic density, whereby n is the only independent vari-
able. Assuming thermal equilibration at each voltage, one
can derive expressions for nt and Nþ

D in terms of n (see
below), whereby Eqs. (1) and (2) are coupled equations in
� and n. For each choice of J, they can be solved and yield
the corresponding V for a current-voltage curve.

We will demonstrate that the above constitutes a com-
prehensive theory of SCLCs. First, however, we identify
the reason that Rose and subsequently Lampert were led to
a dead end and had to postulate an exponential defect DOS.
In their theory, Nþ

D ðxÞ þ pðxÞ, which is equal to the part of
the electron density whose charge is compensated, is set to
the density of free carriers n0 at zero voltage and treated as
a fitting parameter. Though Nþ

D and p are constant at zero
voltage, as electrons are injected into the material, they
acquire a dependence on x and their values get reduced as
the voltage increases. This reduction in Nþ

D is responsible
for converting the would be vertical rise of the current into
a gradual power-law rise.

The main features of Lampert’s theory is highlighted in
Fig. 1(a) by replacing Nþ

D ðxÞ þ pðxÞ by a constant n0 in
Eq. (1) instead of using the thermodynamic expression to
be presented shortly, and numerically solving the coupled
Eqs. (1) and (2) for a model system with L ¼ 310 nm and
Nt ¼ 8:3� 1016 cm�3. The results are as obtained by
Rose and by Lampert, with a vertical rise at a critical
voltage V0 ¼ 24 V, followed by the Mott-Gurney V2

law. Also shown in Fig. 1(a) is the Ohmic rise (blue lines),
calculated separately as in Lampert’s theory, for several
values of n0. In the absence of free carriers other than those
that are injected (effectively T ¼ 0 K), one gets V0 at [10]

V0 ¼ eNtL
2

2��0
: (3)

If one allows thermal excitation from the deep traps at a
finite temperature, one gets the nonlinear rise shown in red
before reaching the vertical rise (often called the modified
Mott-Gurney regime).

We now illustrate the main features and the inherent
power of the comprehensive theory based on Eqs. (1) and
(2). The other key equations are the expressions for nt and
Nþ

D . We allow for the possibility that a given defect may
have two trapping levels corresponding to a singly and
doubly negative charged state, respectively (e.g., vacan-
cies) [18–21]. The second trap level is raised by the onsite
Coulomb energy U, which we treat as a fitting parameter.
We get,

nt ¼ g1NtnNc expð�E1=kTÞ
N2

c þ g1nNc expð�E1=kTÞ þ g2n
2 expð�E2=kTÞ

þ 2g2Ntn
2 expð�E2=kTÞ

N2
c þ g1nNc expð�E1=kTÞ þ g2n

2 expð�E2=kTÞ
;

(4)

where g1 and g2 are degeneracy factors, Nc is the effective
conduction band DOS [22] and E1 is the effective trap level
for single occupancy given by

E1 ¼ Et � Ec þ �EFr þ �EScr
1 ; (5)

and E2 is the effective trap level for double occupancy,

E2 ¼ 2ðEt � EcÞ þUþ �EFr þ �EScr
2 : (6)

The density of donor ions Nþ
D is related to the free carrier

density n and the dopant energy level ED through

Nþ
D ¼ NDNc exp½ðED þ �EFr

1 þ �EScr
1 � EcÞ=kT�

nþ Nc exp½ðED þ �EFr
1 þ �EScr

1 � EcÞ=kT�
: (7)

The corrections to the energy levels include a shift due to
the Frenkel effect for a screened Coulomb potential,

�EFr
1 � � 4:2eE�� kT lnð1þ 4:2eE�=kTÞ

1þ 4:2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4���0E=e

p
�

; (8)

which is an approximation of the exact numerical solution,

where the Debye screening length is given by � ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��0kT=ðe2nÞ

p
, or the Frenkel effect for a neutral trap,

�EFr ¼ �kT ln

�
1

2
þ kT

2Ea

�
1� exp

�
� Ea
kT

���
; (9)

and shift due to the screening charge around an ion site,

�EScr
n ¼ � n2e2

4���0�
; (10)

FIG. 1 (color online). Comparing the roles of dopant and trap
level configurations for a model system. (a) Lampert model in
which n0 is an independent parameter, with a single trap level at
Ec � 0:5 eV; (b) Et ¼ Ec � 0:5 eV with single occupancy and
different dopant energy levels; (c) single and double occupancies
with different values of on-site Coulomb energy U, Et ¼ Ec �
0:5 eV and ED ¼ Ec � 0:3 eV; (d) Et ¼ Ec � 0:5 eV, U ¼
0:33 eV, and ED ¼ Ec � 0:37 eV. (b)–(d) have a self-consistent
Nþ

D instead of n0.
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where the þ sign is for dopant energy levels, the � sign is
for trap energy levels, and n is the number of charges on the
site (the Frenkel effect was not considered in Lambert’s
theory).

The final set of equations is the temperature dependence
of the carrier mobility [23]. The total mobility is given by

1

�n

¼ 1

��ii

þ 1

��op

þ 1

��ac

; (11)

where the three contributions are charged-impurity,
optical-phonon, and acoustic-phonon scattering, respec-
tively. The mobilities depend on the screening length �,
which in turn is a nonlinear function of the mobility
through the free carrier density n.

The key difference between the full solution and prior
theory is the inclusion of the dopant ions, Nþ

D , in Eq. (1).
Because Nþ

D has opposite charge from Nt, the turn on
voltage is reduced from Eq. (3) to

Vc ¼ eðNt � Nþ
D ÞL2

2��0
: (12)

As the dopant sites are filled by injected carriers, Nþ
D

decreases with the applied voltage, resulting in a much
more gradual increase of the current density. The dramatic
effect of dopants is demonstrated in panels (b) through (d)
of Fig. 1. In Fig. 1(b), we show the I-V curves for a single
trap at Ec � 0:5 eV plus dopants (with ND ¼ 4:5�
1016 cm�3) for several values of dopant energy ED from
0 to 0.37 eV below Ec. These curves are calculated without
inclusion of the Frenkel effect. We note that carriers from
the dopants provide an initial Ohmic rise, while the inter-
play between the dopants and the traps slants the vertical
rise in a significant way. The slanted rise, however, does
not have the smooth power law observed in most
experiments.

In Fig. 1(c) we compare results for traps that have either
one or two occupancies (negatively charged and doubly
negatively charged). The three curves correspond to single
occupancy and double occupancies with U ¼ 0:23 and
0.18 eV, respectively. These curves are also without the
Frenkel effect. One feature of the double occupancy of
traps is the appearance of a wide ‘‘modified Mott-Gurney’’
regime between two sharp rises corresponding to Nt � ND

and 2Nt, respectively. The sharp rise atNt disappears when
there is double occupancy.

Inclusion of the Frenkel effect is not optional, its sig-
nificance shown in Fig. 1(d). It is clear that the Frenkel
effect, mostly on the dopants with a Coulombic potential,
plays an important role: it straightens the slanted rise into a
power law (the dashed black line is a pure power law and is
inserted as a guide to the eye). The net conclusion is that it
takes a self-consistent solution of the coupled equations
that govern the occupancy of both the dopants and
the traps, including the Frenkel effect and multiple

occupancies, to get a complete theory that generically
has the observed behavior.
The last ingredient of the theory is a tunneling current

that may be present in materials with very high defect and
dopant concentrations. The tunneling current between trap
sites is usually considered negligible because of the large
distance between traps. However, when both the deep traps
and the shallower dopants exist in large concentrations, an
electron in a deep trap can undergo thermally activated
tunneling to a dopant level similar to variable range hop-
ping [24,25]. Likewise, an electron in the shallow trap can
tunnel into a deep trap. In the presence of an electric field,
such tunneling is biased and contributes to the current.
Equation (2) is then modified to include this contribution,

Jn ¼ �nðenE þ kTrnÞ þ e�tntDE; (13)

where ntD ¼ NtfðEtÞ½1� fðEDÞ� is an effective carrier
density. �t is an effective mobility for trapped carriers,

�t ¼ ed

4kT
� exp½ðEt � EDÞ=kT�; (14)

where d is the average distance between a deep trap

site and a dopant site, and the hopping rate � ¼
�0 expð�2d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�2mED=@
p Þ containing the attempt rate �0

which is assumed to be the typical phonon frequency and
the tunneling rate obtained from simple tunneling.
We now demonstrate the power of the new theory by

applying it to fit and interpret available data. In Fig. 2 we
compare experimental data [26] on polyphenylene vinyl-
ene, PPV, with the best fits using the Lampert theory with a
single trap or with a Gaussian defect DOS (with a fitted
smearing of 0.1 eV) in panel (a), and using the present
theory in panel (b). In Fig. 2(a), it is clear that a single trap
energy level cannot account for the data. A Gaussian
smeared defect DOS improves the fit significantly, but a
deviation from the experimental curve is evident at high
voltages. Furthermore, the attempt to incorporate an intrin-
sic carrier density �0 without introducing a dopant density
ND leads to a highly nonlinear ‘‘Ohmic’’ regime. Blom

FIG. 2 (color online). Comparing the I-V data with theory for
an electron-only PPV device [26], (a) best fits using the Lampert
theory with a single trap level (blue line) and a Gaussian defect
DOS (red line) with a smearing of 0.1 eV; (b) present theory
including the Frenkel effect (red line), and neglecting the
Frenkel effect (blue line).
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et al. [26] fitted the initial rise of their data with an Ohmic
current and the power-law rise with Lampert’s theory
assuming an exponential defect DOS. Their fit yielded a
trap density Nt ¼ 5� 1017 cm�3. Using this value, one
can use Eq. (3) for the critical field V0 to get V0 ¼ 145 V,
whereas the data exhibit a turn-on voltage at �9 V and a
switch to the Mott-Gurney limit at �20 V. We emphasize
that in Ref. [26], the Ohmic rise was fitted by an indepen-
dent theory of free carriers from dopants, with the density
of free carriers being an adjustable parameter. The
Gaussian defect DOS model [13] did not resolve this
issue.

Using the present theory, we are able to fit the experi-
mental curve with a single species of traps with two
occupancies and no tunneling current. The Frenkel effect
for the dopants plays a major role in fitting the data. To
demonstrate that the fit represents internally consistent
physics we examine two critical voltages. The first corre-
sponds to all the trap sites being filled but the dopant sites,
which have a higher energy level, are still quite empty.
That is the nominal TFL turn-on voltage at T ¼ 0 K and is
given by Eq. (12). Using the values of Nt ¼ 8:1�
1016 cm�3 and ND ¼ 4:4� 1016 cm�3 extracted from
the fit, we find Vc ¼ 11 V, in agreement with the data.
The second voltage of interest, given by Eq. (3), is
when the TFL curve turns over into the Mott-Gurney
law. From the fitted Nt, Eq. (3) yields VTFL ¼ 24 V, also
in agreement with Fig. 2.

It is clear that within the TFL region the injected carriers
are filling the dopant sites. Thus, the slope of the I-V curve
in the TFL region is determined by the dopant concentra-
tion. Furthermore, higher dopant concentration leads to a
smaller turn-on voltage. This feature has been observed,
[12,27] but has not been properly accounted for in the
SCLC theory.

The Frenkel effect is crucial for the appearance of a
power-law rise at the TFL. When the dielectric constant of
the material is large, the Frenkel effect is diminished by
screening, and the I-V curves do not exhibit a straight
power-law rise. One such example is the set of
temperature-dependent data measured for a SrBi2Ta2O9

polycrystalline film [28] which shows a strong
temperature-dependent TFL region and onset voltage.
These data offer an opportunity to test the temperature
dependence of SCLCs predicted by the present theory.

Figure 3(a) shows a fit of the above data using
the present theory. The fit is quite satisfactory. In this
case, the initial Ohmic-like rise is dominated by the
tunneling current and is not exactly linear, with an
activation energy, extracted from the mobility plot in
Fig. 3(b), equal to the trap-to-dopant energy-level
difference. The consistency of the fit is also demonstrated
in Fig. 3(c), where the temperature dependence of the
fitted dielectric constant is compared to another
experiment [29].

To further corroborate the presence of tunneling cur-
rents, we consider the voltage dependence of the noise
power. Although Ref. [28] did not measure this, other
measurements of samples exhibiting SCLC indicate that
the noise power peaks slightly above the onset voltage
[11]. Without the tunneling current between traps and
dopant sites, the noise power is high and approximately
constant at low voltages, as shown by the blue curve in
Fig. 3(d). The noise is significantly suppressed if the
tunneling current dominates the Ohmic regime, shown as
the red curve in Fig. 3(d).
In conclusion, we have shown that a proper SCLC

theory can be formulated only if the interplay between
dopants and deep traps is considered and the Frenkel
effect is included. Recognition of the role of dopants in
the SCLC phenomenon allows the possible realization of
Rose’s vision of using the SCLC to probe deep-trap
levels in semiconductors and insulators. In particular, one
can design experiments with various concentrations of
dopants, to ‘‘stretch’’ the TFL region to different voltage
ranges in order to provide multiple curves for the study of a
single deep trap level. Noise power measurements are
useful for identifying the nature of the diffusive current
at low voltages.
This research was conducted at the Center for

Nanophase Materials Sciences, sponsored at ORNL by
the Division of Scientific User Facilities (X. G. Z.), and
by the Division of Material Science and Engineering,

FIG. 3 (color online). Fits for a SrBi2Ta2O9 polycrystalline
film [28]. (a) Solid curves are fits using a temperature dependent
dielectric constant �; (b) effective mobility for the tunneling
current in the Ohmic regime as a function of temperature;
(c) temperature dependence of the fitted � (open red circles),
the filled blue circles are from Ref. [29]; (d) noise power using
two sets of parameters, with (red line) and without (blue line)
intertrap tunneling current. The parameters without tunneling
can only fit 450 K but not other temperatures.
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