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We use linear stability theory and numerical simulations to show that spontaneous phase separation in

elastically coherent solids is fundamentally altered by the presence of free surfaces. Because of misfit

stress relaxation near surfaces, phase separation is mediated by unique surface modes of spinodal

decomposition that have faster kinetics than bulk modes and are unstable even when spinodal decom-

position is suppressed in the bulk. Consequently, in the presence of free surfaces, the limit of metastability

of supersaturated solid solutions of crystalline materials is shifted from the coherent to chemical spinodal.
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Spinodal decomposition is a ubiquitous phase separation
process leading to the spontaneous formation of domain
structures with distinct chemical compositions in diverse
systems ranging from metallic alloys to polymers to liquids.
The seminal work of Cahn and Hilliard [1,2] laid down the
theoretical foundation for understanding the mechanism of
this important phenomenon in bulk materials. On the phase
diagram of a binary system with a miscibility gap, there is
a limit of metastability inside which the solid solution
becomes unstable against infinitesimal composition fluctua-
tions and spontaneously decomposes into a two-phase struc-
ture. Such a process, known as spinodal decomposition,
leads to periodic composition variations of a definite wave-
length that is governed by the competition between the
destabilizing chemical free energy and the stabilizing com-
position gradient energy as well as the elastic energy that
can arise due to the coupling of composition and stress.
When phase separation does not generate internal stress
(e.g., in liquids and some glass), the metastability limit of
the bulk solid solution is defined by the chemical spinodal
within which the second derivative of the chemical
free energy density f against composition c is negative
(@2f=@c2 < 0). However, spinodal decomposition in most
crystalline solids gives rise to coherency stress due to the
variation of lattice parameter a with composition: " ¼
d lna=dc � 0. The incurred elastic energy suppresses phase
separation and shifts the metastability limit to the coherent
spinodal curve at lower temperatures on the phase diagram,
as illustrated in Fig. 1. Cahn [2] showed that the coherent
spinodal is defined by the condition @2f=@c2 þ 2"2Y0 ¼ 0,
where Y0 is an elastic constant. The supercooling from the
chemical to the coherent spinodal can vary from several to
several hundred Kelvins in different systems.

In this Letter, we address the fundamental question: how
does the presence of free surfaces alter spinodal decom-
position in elastically coherent solids? Because internal

stress can be relieved in the proximity of free surfaces,
intuition suggests that coherent spinodal decomposition
should develop more easily near a surface than in the
bulk. This scenario is supported by several recent phase-
field simulations [3–5] that show preferential domain for-
mation along surfaces of thin films during decomposition.
Domain structure of similar morphology has also been seen
in experiments [6,7]. However, despite a vast body of
research on phase separation in crystalline solids in the
literature (e.g., see Ref. [8]), how surfaces influence spi-
nodal decomposition is not quantitatively understood be-
yond this intuitive picture, thereby making it difficult to
interpret experimental observations. Here, we use linear
stability theory to show unambiguously that there exist

FIG. 1 (color online). Phase diagram of a regular solution solid
modeled after parameters described in the text. Areas of different
shades represent regions in which phase separation occurs
through different mechanisms. The dotted line denotes the ex-
istence limit of underdamped surface modes (see text). The
states marked by the symbols r (k0 ¼ 1:1), j (k0 ¼ 0:85),
and � (k0 ¼ 0:5i) correspond to the !surfðkÞ curves plotted in
Fig. 2(a).
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unique surface modes of coherent spinodal decomposition
(SCSD) that develop under conditions where spinodal de-
composition does not occur in the bulk. A major finding is
that the unstable region of the crystalline solid solution is not
bound by the coherent but the chemical spinodal when free
surfaces are present in the system, and SCSD can become
the dominant phase separation mechanism in the region
between the chemical and coherent spinodals. We expect
SCSD to be especially important in nanostructures, in which
the surface-area-to-volume ratio is very high and bulk
spinodal decomposition may even be suppressed [9,10].

It is important to distinguish between SCSD and other
surface-mediated spinodal decomposition phenomena where
the surface energy plays a dominant role. Spinodal decom-
position may be initiated at a surface wall when one com-
ponent of a binary mixture is preferentially attracted to the
wall [11] or when the surface energy favors demixing [12].
In a more complex setting, spinodal decomposition localized
at an alloy-electrolyte interface has been invoked to explain
nanoporosity formation during dealloying [13]. In contrast,
the surface localization in SCSD is due solely to stress
relaxation; it is independent of the surface energy which
neither drives the instability nor selects its wavelength.
Hence, SCSD also differs fundamentally from other types
of stress-driven surface instabilities [14] where the surface
energy is instrumental in determining the pattern scale.

We consider a two-dimensional semi-infinite solid under
plane strain condition with a flat surface at z ¼ 0 and the x
axis parallel to the surface. The solid has two components
A and B, and cðx; zÞ is the local molar fraction of B. Stress
can be represented by the Airy stress function �ðx; zÞ:
�xx ¼ @2z�, �zz ¼ @2x�, and �xz ¼ �@x@z�. The system
is assumed to be isotropic and elastically homogeneous,
and its stress-free strain due to composition variation
follows Vegard’s law: "�ijðcÞ ¼ "0c�ij (i; j ¼ x; z), where

"0 is the misfit strain between pure A and B. We express
the system’s free energy as F ¼ RRR½fðcÞ þ felas þ
�=2ðrcÞ2�dV þ RR

�dA, where fðcÞ is the chemical free
energy density, felas ¼ 1=2�ij½"ij � "�ijðcÞ� the linear elas-
tic energy, � the gradient energy coefficient, and � the
surface energy. We assume � to be independent of compo-
sition and stress and neglect the surface energy effect that
is shown in Ref. [15] to be negligible in comparison to the
elastic and chemical energies associated with a small com-
position modulation. The evolution of the composition
field follows the Cahn-Hilliard equation [2]

@tc ¼ M�½���cþ f0ðcÞ þ felas
0ðcÞ�; (1)

where M is the mobility, the prime denotes a derivative
with respect to c,� � @2x þ @2z , and felas

0ðcÞ ¼ �"0ð�xx þ
�zzÞ ¼ �"0��. The elasticity equilibrium is governed by

�2� ¼ � E"0
1� �2

�c; (2)

where E and � are the Young’s modulus and Poisson ratio,
respectively. To analyze the stability of a spatially uniform
state c ¼ c0 against small perturbations, we linearize the
equations about that state, i.e., f0ðcÞ � f0ðc0Þþ
f00ðc0Þðc� c0Þ; define the scaled fields � ¼ c� c0 and
� ¼ �"0=�; and normalize the equations with length

unit l0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� �2Þ�=E"20

q
and time unit t0 ¼ l40=M�.

After linearization and normalization, Eqs. (1) and (2)
become

½@t þ�ð�þ k20 � 1Þ�� ¼ 0; (3)

�2�þ �� ¼ 0: (4)

Note that � is eliminated from Eq. (3) using Eq. (4). The
governing equations are completed by boundary conditions
at the surface,

@z½ð�þ k20Þ�þ ���jz¼0 ¼ @z�jz¼0 ¼ 0; (5, 6)

@2x�jz¼0 ¼ @x@z�jz¼0 ¼ 0: (7, 8)

Equations (5, 6) impose the conditions of zero concentration
flux and gradient across the surface, as employed in
Refs. [3–5] for composition-independent surface energy,
and Eqs. (7, 8) are the traction-free boundary conditions.
The only parameter appearing in Eqs. (3)–(5, 6) and (7, 8),

k0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�f00ðc0Þ=½E"20=ð1� �2Þ�

q
, characterizes the strength

of the chemical driving force of phase separation relative to
the elastic energy; k0 ¼ 1 and 0 define the bulk coherent and
chemical spinodal curves on a phase diagram, respectively.
When a system resides within the coherent spinodal, i.e.,
k0 > 1, the amplitude of a bulk plane-wave composition

perturbation of the form � / expði ~k � ~rþ!bulktÞ either
grows or decays with time as expð!bulktÞ, where the ampli-
fication factor !bulk is a function of wave vector k:
!bulkðkÞ ¼ k2ðk20 � 1� k2Þ. A bulk perturbation is unstable

if its k is below a critical value kbulkcrit ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 � 1

q
, which

approaches zero at the coherent spinodal. The spinodal
decomposition kinetics in the early stage is dominated by

the fastest-growing mode with k ¼ km �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk20 � 1Þ=2

q
and

!bulk ¼ !m � k4m.
Let us now analyze the stability of a supersaturated solid

solution against a surface-localized composition perturba-
tion of the form� / expðikx� qzþ!tÞ, which is periodic
parallel to the surface but decays exponentially into the bulk
(Re½q�> 0). Substituting this ansatz for � into Eq. (3), one
obtains q2 ¼ k2 � k2m � i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!�!m

p
. Depending on the

value of !, the decay constant q admits different solutions,
which results in different forms of surface-mode perturba-
tions [15]. The most important ones are (i) For!>!m, q is
complex; the composition and stress fields of the surface
modes, whose expressions are given in Ref. [15], have an
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underdamped form that exhibits spatially decaying oscilla-
tion in the z direction. (ii) For!<!m, q is real; the surface
perturbations are free of oscillation in the z direction and are
referred to as overdamped, with the expressions given in
Ref. [15].

Six unknown constants, denoted as �iði ¼ 1; 2Þ and
�jðj ¼ 1–4Þ, appear in the solutions of � and � for the

above surface eigenmodes, to be determined from the
initial and boundary conditions. By substituting � and �
into Eqs. (3)–(5, 6) and (7, 8), we find that �1;2 and �1–4
must satisfy six linear equations, which in matrix form are
Mðk;!; k0Þ½�1; �2; �1; �2; �3; �4�T ¼ 0 [15]. As a neces-
sary condition to have nontrivial surface modes, the deter-
minant of the coefficient matrix M must equal zero,
i.e., Det½M� ¼ 0. This condition implicitly determines
the dispersion relation ! ¼ !surfðkÞ for surface-mode per-
turbations, which is controlled by the single parameter k0
that encapsulates the effects of all thermodynamic and
materials parameters. Figure 2 shows the calculated
!surfðkÞ curves at several k0 values, which represent differ-
ent regions on the phase diagram that have distinct phase
separation behaviors.

(1) Within the bulk coherent spinodal (k0 > 1), spinodal
decomposition occurs via both surface and bulk modes but
the surface mode has a larger growth rate. As illustrated in
Fig. 2(a) for k0 ¼ 1:1, all surface perturbations with k < kb
are underdamped and have larger growth rates than the
most unstable bulk mode with an amplification factor !m.
The overdamped section (!<!m) of the !surfðkÞ curve
connects smoothly to the underdamped section at k ¼ kb,
where !surfðkbÞ ¼ !m. The fastest-growing surface mode,
!surf ¼ !surf

max, occurs at a nonzero wave vector ksurfmax. By
Taylor expansion of Det½M� around ! ¼ 0, we found that
the root of !surfðkÞ is determined by

k

k2m
½ðk2 þ k2m þ 2k4mÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � 2k2m

q
� k3� ¼ 0: (9)

It is straightforward to derive from Eq. (9) that the critical
wave vector of the surface modes, ksurfcrit , is larger than

kbulkcrit . These results unequivocally confirm that the stress

relaxation near free surfaces enhances the instability of
finite-wavelength perturbations and results in faster phase
separation kinetics than in the bulk. In the long-wavelength
limit k ! 0, however, the real part of q of underdamped
modes approaches zero. The surface perturbation thus ex-
tends into the bulk in this limit and behaves like a bulk
mode with !surf ! !m [15].
(2) In between the coherent and chemical spinodals (0<

k0 < 1), surface-mode perturbations with k < ksurfcrit con-

tinue to be unstable, even though bulk spinodal decom-
position is now suppressed, as shown in Fig. 2(a) for
k0 ¼ 0:85. However, different from the case of k0 > 1,
the surface modes now become overdamped in the vicinity
of k ¼ 0 and !surf approaches zero upon k ! 0. The solid
is thus metastable against long-wavelength overdamped
modulations, which is an important distinction between
overdamped and underdamped surface modes. This region
can be further divided into two subregions [15]. When 1>
k0 > k�0 � 0:7246, surface perturbations, including the

most unstable mode, are underdamped at intermediate
wavelengths kb2 < k < kb1 and overdamped otherwise.
For k�0 > k0 > 0, however, the underdamped modes cease

to exist and all surface perturbations assume the over-
damped form; see Fig. 2(b). The boundary line separating
the two subregions, defined by k ¼ k�0, is plotted in Fig. 1.

When the system moves from the coherent towards the
chemical spinodal (k0 ¼ 0), ksurfcrit is decreased and fewer

surface modes are unstable. Upon ksurfcrit reaching zero, the

crystalline solid becomes metastable against any surface-
mode perturbations. Mathematically, this happens when
k ¼ 0 becomes a double root of !surfðkÞ, which is found
from Eq. (9) to occur only at k0 ¼ 0, i.e., exactly on the
chemical spinodal. Therefore, the chemical spinodal is also
the surface coherent spinodal, which is the metastability
limit of a supersaturated crystalline solid solution with
free surfaces. By expanding Det½M� in series around
k0 ¼ ! ¼ k ¼ 0, we find that !surfðkÞ in the limit
k0 ! 0 has the asymptotic expression 4k2ðk20 � 2k2Þ=3,
or 4Mk2½�f00ðc0Þ � 2�k2�=3 in dimensional units, which
does not depend on any elastic properties (E, �, or "0).

(a) (b)

FIG. 2 (color online). (a) Dispersion relation !surfðkÞ of SCSD at k0 ¼ 1:1, 0.85, and 0:5i in dimensionless units. (b) !surfðkÞ
normalized by !m at k0 ¼ 0:8, 0.75, 0.7, and 0.6. Underdamped (!surf >!m) and overdamped (!surf <!m) surface modes are
represented by solid and dashed lines, respectively.
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Remarkably, this result shows that the kinetics of SCSD
becomes asymptotically independent of elastic energy
when approaching the chemical spinodal. This is because,
upon k0 ! 0, the unstable overdamped surface perturba-
tions have diverging wavelengths. Under this limit, the
incurred elastic energy makes an increasingly small con-
tribution relative to the chemical and gradient energies and
its effect on SCSD diminishes asymptotically. Despite
being stress-independent, !surfðkÞ upon k0 ! 0 is different
from the dispersion relation of stress-free chemical spino-
dal decomposition in the bulk, !chemðkÞ ¼ k2ðk20 � k2Þ.
Such a difference stems from the different spatial compo-
sition variations of surface and bulk chemical eigenmodes.

(3) In between the chemical spinodal and the miscibility
gap (pure imaginary k0), !

surfðkÞ 	 0 for all k [e.g., k0 ¼
0:5i in Fig. 2(a)] and the system is metastable against
infinitesimal composition perturbations.

Additional physical insights into the surface modes can
be obtained by analyzing the dependence of their critical
wavelength in physical units, �C � 2	l0=k

surf
crit , on the

chemical driving force measured by k0. �C can be com-
puted analytically in two limits. First, at the bulk coherent
spinodal (k0 ¼ 1), the solid is marginally stable against
bulk fluctuations but has unstable surface modes with a

critical wave vector ksurfcrit ¼
ffiffiffi
3

p
=2 [15], yielding

�Cðk0 ¼ 1Þ � ��
C ¼ 4	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� �2Þ�=3E"20

q
: (10)

Equation (10) makes the key prediction that, in the vicinity
of the bulk coherent spinodal, the characteristic length
scale of surface modes is solely determined by the misfit
strain, elastic modulus, and coefficient � that determines
the chemical energy cost of compositional modulations.
For typical parameter values, this length is on the nano-
scale, as shown below. Second, the asymptotic form of
!surfðkÞ for k0 
 1 implies that the critical wavelength

diverges as �Cðk0Þ �
ffiffiffiffiffiffiffiffi
3=2

p
��

C=k0 near the chemical

spinodal. In between the two limits, the simple formula,

�Cðk0Þ � ��
C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3� k20Þ=2k20

q
, which interpolates between

the above asymptotically exact results for k0 ¼ 1 and
k0 
 1, gives a remarkably good prediction of the critical
wavelength over the whole range 0< k0 	 1, as shown in
Fig. S1 [15]. This formula provides reliable predictions on
how to tune the wavelength of surface modes by varying
thermodynamic conditions and material properties.

We confirmed the linear stability analysis results with
numerical simulations by solving Eqs. (1) and (2) with
free-surface boundary conditions. The simulation domain
has two free surfaces at z ¼ 0 and 200 nm that are suffi-
ciently separated apart, and the periodic boundary condition
is applied in the x direction. The system is modeled as
a regular solution, i.e., fðcÞ ¼ a½c lncþ ð1� cÞ�
lnð1� cÞ� þ bcð1� cÞ, with the following parameters:
a ¼ 0:19T J=cm3 (T—temperature in K), b ¼ 274 J=cm3,
� ¼ 5� 10�12 J=cm, E ¼ 100 GPa, � ¼ 0:25, "0 ¼ 0:05,

andM¼10�12 cm5=J�s. For those parameters,��
C¼9:9nm.

Figure 1 is the phase diagram for such a model system.
Figure 3(a) shows the snapshots of the decomposition
process from an initial state at c0 ¼ 0:5 and T ¼ 298 K,
plus a small random fluctuation, corresponding to a dimen-
sionless k0 ¼ 1:1 [Fig. 2(a)]. Consistent with the theory,
phase separation first occurs in the surface region and pro-
duces a lateral domain pattern aligned with the surface. Only
at much later times does an isotropic domain structure
emerge from bulk spinodal decomposition. In Fig. 3(b),
the amplitude of the dominant surface composition wave,
Asurf
maxðtÞ, displays exponential growth with time at the early

stage and the amplification factor agrees well with the
theoretically predicted !surf

max. Deviation of Asurf
maxðtÞ from

linear theory becomes pronounced at later times due to the
nonlinear term in Eq. (1).We calculated!surf

max numerically as
a function of k0 from a series of simulations at different
initial states. As shown in Fig. 3(c), the numerical values are
in very good agreement with the linear theory. We note that
the parameters employed in the simulations are comparable
to those used for studying phase separation kinetics in a
lithium-ion insertion electrodematerial LixFePO4 [16,17], in
which Li-rich (LiFePO4) and Li-poor (FePO4) phases are
separated by a miscibility gap. FePO4=LiFePO4 domains
aligned along the surface were observed in thin plate parti-
cles in a previous experiment [7], suggesting that they
probably result from SCSD. Such a connection is corrobo-
rated by more detailed 3D simulations that account for the
anisotropies of Li diffusion and elasticity in LiFePO4, to be
published elsewhere.
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FIG. 3 (color online). (a) Snapshots of spinodal decomposition
in a solid with free surfaces and an initial state at c0 ¼ 0:5 and
T ¼ 298 K (r in Fig. 1). (b) Amplitude of the dominant surface
composition wave calculated from simulation (solid line) and
linear stability analysis (dashed line). (c) Dimensionless !surf

max vs
k0 calculated from simulations (squares) and linear theory (solid
line). Also shown are the maximal ! of bulk coherent (dashed
line) and chemical (dash-dotted line) spinodal decomposition.
The inset compares the asymptotic and exact expressions of
!surf

maxðkÞ in the limit k0 ! 0.
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Our finding on the existence of SCSD has profound
implications for the stability and microstructural evolution
of phase-separating crystals. Many important engineering
materials, such as ternary III–V semiconductors [18], show
a large separation between the chemical and coherent spi-
nodals due to strongmisfit strain energy. SCSD considerably
expands the unstable region of the homogeneous solution of
these materials and may control the phase separation mor-
phology. The development of lateral composition modula-
tion has been frequently seen in semiconductor andmagnetic
thin films grown epitaxially on substrates [6,19]. Although
phase separation in such films is affected by both the free
surface and the substrate-film interface, the epitaxial strain
usually favors composition homogeneity [20], but the stress
relaxation near the surface promotes lateral fluctuation.
Notably, Hsieh et al. [6] observed a depth-dependent com-
position modulation in low-temperature-grownAl0:3Ga0:7As
films after annealing at 600 �C. The lateral Al concentration
variation is most pronounced near the surface and decays
gradually into the films, which bears a close resemblance to
the surface-mode perturbations. While a vacancy-assisted
mechanism was suggested by Hsieh et al. to account for
the depth dependence, the well-defined orientation and
periodicity of the domain pattern is a strong indication of
the occurrence of SCSD during annealing.

In summary, we have revealed the existence of unique
SCSD in crystalline solids with miscibility gaps and de-
rived analytical predictions for their characteristic wave-
length. SCSD exhibits larger growth rates than the bulk
modes and extends the instability region of a supersatu-
rated solid solution from the coherent to the chemical
spinodal. SCSD generates heterostructures with very dif-
ferent morphology and feature sizes from bulk spinodal
decomposition, which may be potentially utilized in a
variety of applications, such as nanostructure patterning
and photoluminescence. Our study and its extension will
provide guidance for controlling SCSD to produce desired
nanostructures.

The work of M. T. is performed under the auspices of the
U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract No. DE-AC52-
07NA27344. Support from the Laboratory Directed
Research and Development (LDRD) Program is acknowl-
edged. A.K. acknowledges support of DOE Grant
No. DEFG02-07ER46400. Simulations were carried out

at the National Energy Research Scientific Computing
Center, which is supported by the Office of Science of
the U.S. Department of Energy under Contract No. DE-
AC02-05CH11231. M. T. thanks Dr. J. Floro for a useful
discussion.

*tang25@llnl.gov
[1] J.W. Cahn and J. E. Hilliard, J. Chem. Phys. 28, 258 (1958).
[2] J.W. Cahn, Acta Metall. 9, 795 (1961).
[3] D. J. Seol, S. Y. Hu, Y. L. Li, J. Shen, K.H. Oh, and L.Q.

Chen, Metal. Mater. Int. 9, 61 (2003).
[4] D. J. Seol, S. Y. Hu, Y. L. Li, J. Shen, K.H. Oh, and L.Q.

Chen, Acta Mater. 51, 5173 (2003).
[5] S.M. Wise, J. S. Kim, and W.C. Johnson, Thin Solid

Films 473, 151 (2005).
[6] K. C. Hsieh, K.Y. Hsieh, Y. L. Hwang, T. Zhang, and

R.M. Kolbas, Appl. Phys. Lett. 68, 1790 (1996).
[7] G. Y. Chen, X.Y. Song, and T. J. Richardson, Electrochem.

Solid State Lett. 9, A295 (2006).
[8] P. Fratzl, O. Penrose, and J. L. Lebowitz, J. Stat. Phys. 95,

1429 (1999).
[9] J. J. Hoyt, Acta Mater. 57, 1105 (2009).
[10] H. P. Fischer, P. Maass, and W. Dieterich, Europhys. Lett.

42, 49 (1998).
[11] S. Puri, J. Phys. Condens. Matter 17, R101 (2005).
[12] H. P. Fischer, P. Maass, and W. Dieterich, Phys. Rev. Lett.

79, 893 (1997).
[13] J. Erlebacher, M. J. Aziz, A. Karma, N. Dimitrov, and K.

Sieradzki, Nature (London) 410, 450 (2001).
[14] R. J. Asaro and W.A. Tiller, Metall. Mater. Trans. B 3,

1789 (1972); M.A. Grinfeld, Sov. Phys. Dokl. 31, 831
(1987); D. J. Srolovitz, Acta Metall. 37, 621 (1989).

[15] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.108.265701 for addi-

tional information.
[16] M. Tang, W. C. Carter, and Y.-M. Chiang, Annu. Rev.

Mater. Res. 40, 501 (2010).
[17] M. Tang, J. F. Belak, and M.R. Dorr, J. Phys. Chem. C

115, 4922 (2011).
[18] G. B. Stringfellow, J. Electron. Mater. 11, 903 (1982).
[19] I.-S. Yu, M. Jamet, T. Devillers, A. Barski, P. Bayle-
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