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We study rotating quasi-two-dimensional Bose–Einstein condensates, in which atoms are dressed to a

highly excited Rydberg state. This leads to weak effective interactions that induce a transition to a

mesoscopic supersolid state. Considering slow rotation, we determine its superfluidity using quantum

Monte Carlo simulations as well as mean field calculations. For rapid rotation, the latter reveal an

interesting competition between the supersolid crystal structure and the rotation-induced vortex lattice

that gives rise to new phases, including arrays of mesoscopic vortex crystals.
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Superfluidity, i.e., the frictionless flow of a liquid, is one
of the most spectacular manifestations of quantum me-
chanical behavior on a macroscopic scale. Generally,
superfluidity can be characterized from the response of a
many-body system to a slow, externally imposed rotation.
A classical fluid enclosed in a rotating vessel will be
dragged along and eventually rotate with it. A superfluid,
on the other hand will, due to a lack of viscosity, remain
stationary and for sufficiently fast rotation form quantized
vortices that arrange on a regular lattice [1,2]. Superfluidity
has long been speculated to occur even in solid states of
matter, combining the seemingly antithetical qualities of
crystalline order and nondissipative flow [3–5]. Recent
experimental evidence for such a peculiar supersolid phase
in 4He crystals [6,7] has sparked an intense debate about its
physical origin, which however remains controversial [8].

On the other hand, ultracold gases have emerged as a
powerful laboratory to study a diverse range of many-body
problems, including discrete supersolid states in optical
lattices [9]. A promising route to the observation of con-
tinuous supersolids has been recently laid out [10,11], on the
basis of off-resonant dressing of atomic Bose–Einstein con-
densates (BECs) to high-lying Rydberg states [12–16]. The
effective atomic interactions resulting from such a Rydberg
dressing provide a clean realization of a simple model for
supersolidity [17]. Given the range of available techniques
for accurate probing of BECs [18] and recent advances in
the manipulation of cold Rydberg atoms [19], this approach
holds promise for the observation of supersolidity under
well-defined and highly controllable conditions.

In this Letter, we explore the possibility for creating and
detecting mesoscopic supersolids in confined, Rydberg-
dressed BECs by probing their response to forced trap
rotations. For infinitesimally small rotation frequencies,
large-scale simulations demonstrate that crystalline order
and superfluidity (see Fig. 1) persist at well-accessible
temperatures, enabling supersolid creation in cold atom

experiments. Combining the results from first-principle
quantum Monte Carlo (QMC) simulations and mean field
calculations, we reveal a universal behavior of the crystal-
line ordering and the superfluidity that enables simple
estimates of the system behavior over a wide range of

FIG. 1 (color online). (a) Schematics of the considered setup in
which the ground states (jgi) of condensed atoms are off-resonantly
coupled to high-lying Rydberg states (jei) with a large laser detun-
ing � and a small Rabi frequency � � �. The resulting effective
interaction, shown in (b) can lead to the formation of mesoscopic
supersolids in a quasi-two-dimensional condensate, exemplarily
shown in panels (c) and (d). The extended plateau of the histogram
PðkÞ of k-particle permutations, shown in (c) indicates a large
superfluid fraction, whereas the density shown in (d) demonstrates
crystallization. The results correspond to N ¼ 3000 rubidium atoms
confined in a trap with !tr=2� ¼ 125 Hz and dressed to
Rbð50S1=2Þ Rydberg states with realistic laser parameters of

�=2� ¼ 75 MHz and �=2� ¼ 2:2 MHz. The depicted QMC
results yield a large superfluid fraction fs ¼ 0:51ð4Þ for an experi-
mentally accessible temperature of T ¼ 42 nK.
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experimentally relevant conditions. At higher frequencies,
the rotation induces drastic structural changes due to an
interesting competition between the vortex lattice, con-
trolled by short-range collisions, and the supersolid crystal
arising from the finite-range Rydberg interactions.

A Rydberg-dressed BEC is a gas of Bose-condensed
atoms whose ground state jgi is far off-resonantly coupled
to a highly excited Rydberg state jeiwith a Rabi frequency
� � �much less than the corresponding laser detuning�
[see Fig. 1(a)] [10–14]. Specifically, we consider two-
photon coupling to nS1=2 Rydberg states of alkalines which
leads to an effective interaction [10]

WðrÞ ¼
~C6

R6
c þ r6

(1)

between the dressed ground-state atoms, where ~C6 ¼
ð�2�Þ4C6, Rc ¼ ðC6=2@�Þ1=6, and C6 is the strength of the

van der Waals interaction between Rydberg atoms [20]. At
large distances r � Rc, the interaction resembles the
Rydberg–Rydberg atom interaction C6=r

6, suppressed by
a factor ð�=2�Þ4 since only a small Rydberg-state fraction
ð�=2�Þ2 is admixed to the ground state. At small distances
the dipole blockade [21] prevents two-atom dressing, such

thatWðrÞ saturates to a value of ð�2�Þ3@�, independently of

the addressed Rydberg state [see Fig. 1(b)].
We consider quasi-two-dimensional condensates [22,23]

that are strongly confined along the z direction. Transversely,
the atoms are weakly confined in a harmonic trap with a

frequency !tr. Scaling lengths by the oscillator length l ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@=m!tr

p
(m is the atomic mass) and frequencies by!tr, we

obtain the following Hamiltonian in the rotating frame

Ĥ ¼ � 1

2

X
i

~r2
i þ 1

2

X
i

ð~r2i ��~Lz;iÞ

þX
i<j

�

r6c þ j~ri � ~rjj6
þ ��ð~ri � ~rjÞ; (2)

where � ¼ ffiffiffiffiffiffiffi
8�

p
as=lz is the effective strength of the contact

interaction due to s-wave collisions with scattering length

as,� ¼ m ~C6=ð@2l4Þ, rc ¼ Rc=l,� is the rotation frequency
in units of the trapping frequency, ~ri ¼ ri=l is the scaled
position of the i th atom, and ~Lz;i denotes the corresponding

angular momentum operator.
Focusing on the effects of the Rydberg interactions, we first

assume � ¼ 0 and investigate the stationary (� ¼ 0) equi-

librium thermodynamics of Ĥ byQMC simulations [24] based
on the continuous-spaceWorm algorithm [25]. Fig. 1(d) shows
the computed density profile for a large number (N ¼ 3000)
of rubidium atoms at a temperature T ¼ 42 nK coupled to
Rbð50S1=2Þ Rydberg states with �=2� ¼ 2:2 MHz and

�=2� ¼ 75 MHz. The formation of a self-assembled droplet
crystal is evident. Note that the experimentally relevant pa-
rameters correspond to very weak interactions k�1

B WðrÞ<
k�1
B @�4=ð2�Þ3 � 10�1 nK � T. In this weak coupling
limit, crystallization nevertheless occurs due to the presence

of many atoms in each blockade sphere, forming a solid of
liquid droplets with collectively enhanced interactions. On the
other hand, the average number of Rydberg excitations in each
droplet is only�0:04, which diminishes Rydberg state decay
[10,13] and renders many-body effects that tend to counteract
the binary interaction (1) [26], unimportant.
In addition, the QMC simulation yields a large superfluid

fraction of fs � 0:5, showing that the observed mesoscopic
crystal is indeed a supersolid. fs corresponds to the fraction
of atoms that decouples from a vanishingly small trap rota-
tion, such that fs ¼ 1� Iqm=Ic, where Ic and Iqm are the

classical and the actual (i.e., quantum mechanical) moments
of inertia that can be computed with QMC simulations [27].
The finite value of fs is also indicated in Fig. 1(c) by the
extended plateau of the probability PðkÞ that k particles
exchange within the system. PðkÞ is finite for all k � N in
a superfluid but drops to zero in a classical crystal [28].
The large superfluid fraction arises from the extended

inner plateau of the interaction potential (1), which can
accommodate a large number of atoms that maintain a
sizable superfluid fraction, even in the defect-free droplet
crystals discussed in this work. As a result, the superflu-
idity does not critically depend on the size and specific
structure of the mesoscopic crystals and, in particular, stays
finite in the thermodynamic limit of infinitely large sys-
tems (see Supplemental Material [29]). This behavior is in
contrast to mesoscopic assemblies with pure power-law
potentials [30] where the superfluidity depends strongly
on the cluster geometry and vanishes in the bulk limit of
infinite defect-free crystals [31].
The temperature dependence of fs is shown in Fig. 2(a) for

different atom numbersN and interaction strengths� but with
the product �N ¼ const held constant. Apparently, super-
fluidity extends to higher temperatures for larger values of
N, which is readily understood from simple arguments. As
will be explained below, the crystal structure remains un-
changed for �N ¼ const, such that increasing N merely
increases the number of atoms in each droplet. As a result,
the system becomes less susceptible to fluctuations, which
facilitates exchange between the mesoscopic crystal sites and,
hence, leads to larger fs. Upon rescaling the temperature with
N, all data collapse on a single curve [inset of Fig. 2(a)]. This
universal behavior of the crystalline order and superfluidity
with respect to�N and T=N can be used to predict the system
behavior for a wider range of parameters. For instance, at a
typical interaction range Rc ¼ 2 �m and a large number of
N ¼ 104 Rb atoms, the calculations of Fig. 2 imply a crystal
structure as in Fig. 2(e) with a superfluid fraction of fs � 0:4,
both persisting at a large temperature of T � 350 nK.
The local superfluid density �s is also closely linked

to slow trap rotations and can be obtained with QMC
simulations from a local area estimator [32] of the nonclass-
ical rotational inertia. In his seminal paper on supersolidity in
helium, Leggett [5] proposed a far simpler approach to esti-
mate the superfluid density by considering the response of a
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liquid in a slowly rotating ring-shaped container. Within a
mean field (MF) approximation, simple phase matching argu-
ments yield the radial superfluid density [5]

�sðrÞ ¼ 2�R
d’�ðrÞ�1

(3)

solely in terms of the single-atom density �ðrÞ, integrated
over the polar angle ’. This expression provides an upper
bound of the exact superfluid density �sðrÞ and offers an
intuitive picture for the superfluid properties of the found
droplet crystals, suggesting that the maintenance of a super-
fluid flow is foremost hampered by regions of low density
[5,33,34]. With increasing interactions the density modula-
tions become more pronounced such that �sðrÞ eventually
vanishes, since the atoms can not pass through extended
regions where �ðr; ’Þ ! 0. In this strong-coupling limit
that goes beyond the MF approximation, QMC simulations
show that the system enters a globally insulating phase [11].
Likewise, Eq. (3) gives �sðrÞ ¼ �ðrÞ in the nonmodulated
phase, i.e., a perfect superfluid.

To test this intuitive picture we also performed MF
calculations, on the basis of the corresponding nonlocal
Gross-Pitaevskii equation

i@t ~c ð~rÞ ¼
�
�r2

2
þ ~r2

2
��~Lz þ �Nj ~c ð~rÞj2

þ �N
Z

d~r0
j ~c ð~r� ~r0Þj2
r6c þ ~r06

�
~c ð~rÞ; (4)

where ~c ð~rÞ denotes the normalized (
R j ~c j2d~r ¼ 1) con-

densate wave function and yields the single atom density

�ðrÞ ¼ Nj ~c ð~rÞj2. Equation (4) predicts that within MF the
crystal structure depends only on the product �N, as found
above from the QMC simulations. At very low tempera-
tures, the MF calculations yield virtually the same crystal
structure as the QMC results cf. [Figs. 2(c) and 2(d).] In this
zero-temperature limit the superfluidity approaches a con-
stant value independent of the atomnumberN [see Fig. 2(a)],
with �N held constant. This behavior can also be under-
stood from Eqs. (3) and (4), which depend solely on the
product�N. Indeed, the radial atomic density and superfluid
densities obtained from Eqs. (3) and (4) closely reproduce
the QMC results, demonstrating that Eq. (3) not only pro-
vides an upper bound [5,34] of the superfluidity but yields
an accurate description of the structural and superfluid
properties for the present realization of a supersolid.
Having established the predictive power of theMF approxi-

mation for T ! 0, we can apply Eq. (4) to rotating assem-
blies. PreviousMF studies of rotating dipolar condensates [35]
have revealed a range of different vortex lattices as a function
of the dipolar interaction strength. In the present case, the
ground state depends on four parameters rc, �, �N and �N,
which makes a complete parameter scan prohibitively de-
manding. Being primarily interested in the effects of the
Rydberg interactions and focusing on the large-N regime,
we set �N ¼ 104 [36]. In order to scan the remaining pa-
rameter space, we use the following procedure: For a given set
of� and rc we first calculate the ground state for � ¼ 0 via
complex time evolution, which agrees with the results [37] for
contact interactions. Subsequently, we slowly increase �N
and follow the complex time evolution [10,14,37] of the BEC.
This yields the ‘‘phase diagrams’’ depicted in Fig. 3.
In the region of small �N and � (SF in Fig. 3) we find a

simple superfluid, with �s ¼ � and an unstructured density
profile.Upon increasing the rotation frequencyaboveacritical
value, vortices start to formandeventually arrangeona regular
lattice, whose spacing decreases for increasing rotation fre-
quency and interaction strengths (VL in Fig. 3). For small
values of �N, the nonlocal character of the corresponding
interaction inEq. (4) is ofminor importance, such that the total

interaction canbedescribedvia an effective contact term�0 ¼
�þ 2�2�=ð33=2r4cÞ (see SupplementalMaterial [29]). In this
regime, we indeed find ordinary vortex lattices determined by
�0N [seeFigs. 3(a) i, 3(b) i, and3(c) i].With increasing�N the
finite range of the dressing-induced interaction becomes im-
portant and changes the symmetry of the vortex lattice. For
small rc [Fig. 3(a)] the system is alreadyclose to thebulk limit,
where one finds a transition to a honeycomb density pattern.
For large rc, finite size effects become dominant and lead to
the formation of concentric rings superimposed on the under-
lying vortex lattice [Fig. 3(c) ii].
The finite system size also affects the crossover to super-

solid states [38]. In the bulk limit, the critical interaction
strength �2DN can be linked to a roton instability of the
unmodulated ground state [10] and, therefore, decreases
with increasing rotation frequency (at larger� it increases

FIG. 2 (color online). (a) Temperature dependence of the
superfluid fraction for different particle numbers and �N ¼
24500, � ¼ 0, and rc ¼ 2:65. The horizontal arrow indicates
the T ¼ 0MF prediction [Eq. (3)]. As shown in the inset, all data
points collapse on a single curve upon scaling T by N. The
vertical arrows indicate the temperatures used in (d) and (e).
(b) Comparison of the radial density � and superfluid density �s

for N ¼ 400. Panels (c)–(e) show the corresponding ground-
state densities obtained from (a) the MF approximation Eqs. (3)
and (4) and (b, c) the QMC simulations.
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again due to the decreasing density caused by the centrifu-
gal potential). For small rc values [Fig. 3(a)], the critical
value at � ¼ 0 can thus be estimated from a local density
approximation (LDA) of the roton instability, which gives

r�4
c �Nj ~c ð0Þj2 ¼ 31:9þ 6:1� and for the parameters of
Fig. 3(a), r�4

c �N ¼ 9:3� 104. For larger rc values, the
supersolid transition is preceded by the aforementioned
ring formation. Assuming that the transition is initiated
by a one-dimensional roton instability of the innermost
ring, one obtains r�4

c �1DN ¼ 6:7� 104 and r�4
c �1DN ¼

7:2� 104 for the parameters of Figs. 3(b) and 3(c), re-
spectively, in good agreement with the numerics.

The supersolid phase (SS in Fig. 3) retains the vortices.
They are, however, pushed into the low-density regions and
form a honeycomb vortex lattice that does not affect the
structure of the supersolid droplet crystal (see Figs. 3(b) iii
and 3(c) iii). At larger rc, on the other hand, there is an
interesting competition of length scales between the super-
solid crystal and the vortex lattice. For sufficiently high
rotation frequencies the vortex density and, hence, the
vortex–vortex interaction, exceeds a critical value at which
it becomes energetically favorable to form vortices inside

the superfluid droplets [SSV in Fig. 3(c)]. As shown in
Fig. 3(c) iv, the crystal structure of this additional vortex
lattice is imposed by the triangular supersolid. The mini-
mum rotation frequency, to support these states increases
as rc is reduced. Since the confinement ceases for � � 1,
this implies a minimum interaction range rmin

c ð�NÞ in order
to observe the SSV states for a given contact interaction
�N. For larger rc values, the on-site number of vortices
successively increases, which eventually form a meso-
scopic crystal of small vortex crystals as shown in Fig. 4.
In this work, we demonstrated novel vortex transitions in

a realistic model of supersolids in the regime of weak
interactions and large atom numbers per blockade sphere,
which is most directly accessible to experiments. Extending
the present study to the regime of strong coupling, future
work may address how strongly correlated supersolids can
be stabilized in finite-temperature cold atom experiments,
which will more closely resemble the physical mechanism
thought to underlie supersolidity in He. Along these lines,
the realization of the found vortex crystals in the regime of
strong interactions and small particle numbers will open the
way towards studying quantum Hall-like phenomena in
rapidly rotating self-assembled structures. This will require
a beyond-MF description of the correlated many-body
dynamics induced by rapid rotation.
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