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We study the hydrodynamic interaction between a sphere and an elastic surface at a nanoscale with a

dynamic surface force apparatus. We show that the interplay between viscous forces and elastic

deformations leads to very rich scaling properties of the force response, providing a unique signature

of the surface elastic behavior. These properties are illustrated on three different examples: a thick

elastomer, a thin elastomer film, and a layer of micrometric bubbles. We show that this fluid probing

allows one to measure the Young’s modulus of surfaces and soft thin layers at distance, without any direct

solid-solid contact.
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The nano-mechanics of soft, thin materials, such as poly-
mer coatings, has become an important issue with the
development of composite and nano-composite new mate-
rials and their applications in many industrial processes
(surface coatings, stability of structures used in microelec-
tronics, etc.) [1–4]. Direct characterization based on touch-
ing the surfacewith a solid probe does not always provide an
absolute determination of elastic moduli, since adhesion
and friction forces are intrinsically of the same magnitude
as the elastic forces [5–7]. In some extreme cases, such as
bubbles or biological systems, contact forces can even ruin
the sample. A naive idea would be to blow gently on these
soft surfaces to deform them without touching them. In this
Letter, we rather demonstrate that a liquid probe can be
an alternative to classical hard contact mechanics. More
precisely, we show that the nano-hydrodynamic interaction
between a sphere and a soft layer supported on a rigid
substrate can provide a new, precise, and faithful method
for measuring its absolute elastic properties. Indeed in the
past ten years, surface forces measurements and more gen-
erally very weak forces measurements have reached an
encompassed precision [8–11] and nano-hydrodynamic
forces have been used to probe the friction at a solid-liquid
interface. We extend here the use of nanoflows to measure
the mechanical properties of surfaces.

We use the nanoscale flow created by a sphere which is
oscillated at a very small amplitude in the direction normal
to the tested surface. We use to create this flow a surface
force apparatus (SFA) [12]. The fluid layer between the
sphere and the plane is forced to drain inward and outward
of the gap, generating a dynamic pressure at the excitation
frequency !=2�. More specifically, we define the dynamic

response ~G!ðDÞ ¼ ~F!=h0 as the ratio of the complex am-
plitude ~F! of the hydrodynamicforce to the amplitude h0 of
the oscillating motion [Fig. 1(a)]. If the probed surface is
perfectly rigid, the force applied by the flow is the so-called
Reynolds force of amplitude RðDÞ ¼ 6��h0!R2=D, �

being the fluid viscosity andD the sphere—surface distance.
An important feature of the Reynolds flow is that the radial

extension of the applied pressure is of order
ffiffiffiffiffiffiffiffiffiffi
2RD

p
. Thus,

when the distance is varied, the hydrodynamic force and the
probed area vary in opposite ways, resulting in a great
flexibility of this mechanical essay. If the target surface is
not rigid but elastically compliant, the lubrication flow
couples to its elastic deformation. In a recent paper, we
have calculated theoretically the elasto-hydrodynamic

(EHD) linear response ~G!ðDÞ as a function of the
Young’s modulus E and the Poisson ration � of the material
[13]. In this Letter, we demonstrate that the precise mea-

surement of ~G!ðDÞ allows for an absolute determination of
the elastic modulus of the surface without further assump-
tion on adhesion properties. This experimental proof is
performed on three examples which illustrate the three
possible types of elasto-hydrodynamic interactions.

(a) (b)

FIG. 1 (color online). Principle of the experiment. (a) A sur-
face force apparatus creates a flow between a sphere and an
elastic film (the sphere oscillates with an amplitude h0 at a
frequency f ¼ !=2�). The typical distance over which the
flow probes the soft surface quotes

ffiffiffiffiffiffiffiffiffiffi
2RD

p
. (b) Spring-and-

dashpot model equivalent to the system. The dashpot character-
istic is given by the Reynolds force.
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As a first example we study a thick (1 mm) elastomer
made of reticulated polydimethylsiloxane (PDMS;
SYLGARD 184, Dow Corning), cured at 50 �C for 24 h.
A water—glycerol solution of viscosity � ¼ 12 mPa � s is
the fluid probe. The dynamic force response plotted as a
function ofD in Fig. 2 shows two regimes. At large distance,
the response is dominated by the reference viscous damping
G00

! ¼ 6��!R2=D. The compliance of the elastomer ap-

pears through the small real part G0
!ðDÞ scaling as 1=D5=2.

This is the viscous regime. As the distance decreases, the two
componentsG0

! and G00
! become eventually of same magni-

tude and saturate at a constant value. In this elastic regime,
the damping does not diverge as 1=D because the fluid is no
longer expelled from the gap between the surfaces. The
elastic surface does not sustain the viscous pressure and
accommodates for most of the sphere displacement h0.

It is of interest to describe this scaling with a semiquanti-
tative model. At large distance, the hydrodynamic force is

weak and does not indent the elastomer significantly. The
fluid probe acts as a dashpot of damping coefficient �ðDÞ ¼
6��R2=D applying a pressure RðDÞ=2�RD over the
area 2�RD. The target surface responds to this localized

stress as a semi-infinite medium, with a stiffness kðDÞ ¼
E��

ffiffiffiffiffiffiffiffiffiffi
2RD

p
[14]. Here, E� ¼ E=ð1� �2Þ is the reduced

Young’s modulus of the elastomer. The nondimensional

number �!=k ¼ ðDk=DÞ3=2 defines a crossover length

Dk ¼ 8Rð�!=E�Þ2=3. The amplitude of the surface inden-

tation is � ¼ R=k ’ h0ðDk=DÞ3=2. Thus, the small inden-
tation limit corresponds to the viscous regime observed
for D � Dk. The force response of this spring-and-dashpot
in series, G! ¼ ð1=kþ 1=i�!Þ�1, can be expanded as
G! � i�!þ ð�!Þ2=k. One recovers a real part G0

! scaling

as D�5=2. When D becomes lower than Dk, the flow sepa-
rates in two regions. In a central region where the liquid
thickness is lower than Dk, the liquid clamped by its vis-
cosity acts as a solid probe. The elastic indentation of the
target surface accommodates fully for the sphere oscillation.
Outside this region, the features of the Reynolds flow are
recovered. The system is now a spring-and-dashpot in par-
allel, and the response saturates toG! � kðDkÞ þ i!�ðDkÞ,
more or less close to its crossover value. Thus, this simple
model accounts semiquantitatively for the experimental
results. In the full theoretical analysis, we have shown that
the EHD response of a bulk medium is fully described by
the single parameter Dk via a master function gk tabulated
in [13]:

G!ðDÞ ¼ 6��!R2

Dk

gk

�
D

Dk

�
; (1)

with gkð0Þ¼2:015þ1:163i and gkðx � 1Þ ¼ i=xþ
0:173=x5=2. This master function reproduces well the scal-
ing of the data, shown in Fig. 2(a) for the forcing frequency

!=2� ¼ 19 Hz. By fitting the D�5=2 decay of the real part
we obtain an estimate of the critical distanceDk�1:25�m.
This gives the minimum value of the hydrodynamic radiusffiffiffiffiffiffiffiffiffiffiffiffi
2RDk

p ¼ 100 �m. This value is not very small compared
to the film thickness, leading to finite size effect which is
clear in Fig. 2(a). Using the full theory which takes into
account the finite film thickness [13], we obtain an excellent
agreement as well as the refined value Dk ¼ 1:455 �m.
The same procedure for an experiment performed at a
forcing frequency of 39 Hz gives Dkð39 HzÞ ¼ 2:455 �m
[see Fig. 2(b)]. The ratioDkð19 HzÞ=Dkð39 HzÞ ¼ 0:593 is

very close to the frequency ratio ð19=39Þ2=3 ¼ 0:619
predicted by our analysis. The relative difference of 4%
shows the accuracy of our technique. Taking a Poisson ratio
� ¼ 1=2, we derive a value of the Young’s modulus
E ¼ 2:7� 0:1 MPa for this reticulated PDMS.
The case of a bulk medium illustrated above is obtained

when the thickness � of the elastic layer is much larger

than the fluid probe radius
ffiffiffiffiffiffiffiffiffiffi
2RD

p
. An interesting second

example is the thin film limit � � ffiffiffiffiffiffiffiffiffiffi
2RD

p
. Figure 3 shows a
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FIG. 2 (color online). Real part (blue) and imaginary part (red)
of the force response G!ðDÞ obtained on a reticulated PDMS
of thickness 1 mm. (a) Log scale, f ¼ 19 Hz; (b) linear scale,
f ¼ 19 Hz and f ¼ 39 Hz. The sphere radius is 3.4 mm and the
liquid viscosity is 12� 2 mPa � s. In (a) the dashed line plots
6��!R2gk=Dk as a function of D=Dk [Eq. (1)]. In (a) and
(b) the continuous black line is the best fit of the linear EHD
theory [13] with Dkð19 HzÞ ¼ 1:455 �m and Dkð39 HzÞ ¼
2:455 �m. The inset represents a flat punch of radius

ffiffiffiffiffiffiffiffiffiffi
2RD

p
indenting a semi-infinite medium.
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4:4 �m reticulated PDMS film studied with the SFA
(R ¼ 3 mm) using a glycerolwater mixture of viscosity
43� 2 mPa � s. The thin film was deposited on a floated
Pyrex plane by spin coating a solution of PDMS (30% in
heptane) mixed with the curing agent (SYLGARD, Dow
Corning, reticulating ratio 10:1). After deposition the
samples were cured first at 150 �C for 1 h, and then at
75 �C over a night in an oven.

As previously the force response shows a viscous regime
at large distance and saturates at small distance. However,
the response is much stiffer than the one of the thick layer:
the real part G0

! is always lower than the dissipative part
G00

!, and decays as 1=D4 in the viscous regime. This stiff
behavior of the incompressible elastomer is due to its
confinement: the layer has to expand in its own plane in
order to compensate for an indentation in the transverse
direction. This enhanced stiffness due to confinement has

been described in the domain of contact mechanics, such as
the so-called Johnson-Kendall-Roberts tests [7,15]. It leads
to an elastic pileup mechanism which prevents accurate
measurements of moduli in the range of the MPa for layers
whose thickness is less than the micrometer [16,17]. In the
case of the fluid probe, the in-plane displacement ur of the
layer at the border of the stressed area compensating an

indentation � is ur ¼ RD�=�
ffiffiffiffiffiffiffiffiffiffi
2RD

p
. As the layer is

clamped on the underlying Pyrex substrate, this displace-
ment induces a shear of order �� ur=�. The stored elastic
energy R�� ð��2=2Þ2�RD�, with � ¼ E=3 the shear
modulus of the elastomer, determines the stiffness of the
confined layer kðDÞ ¼ R=�� 4�R2D2E=3�3. Note that
this stiffness depends more severely on the sphere-plane
distance than the one of the thick layers, which scaled asffiffiffiffi
D

p
. This gives a new cutoff distance Ds ¼ �ð4�!=EÞ1=3

defined from �!=k ¼ ðDs=DÞ3. The cutoff distance of the
confined layer is proportional to its thickness and depends
only as the one-third power of its modulus. The real part of
the force response in the viscous regime G0

! � ð�!Þ2=k
vanishes as 1=D4.
The theoretical EHD response of the confined incom-

pressible layer writes [3]:

Ds ¼ �

�
4�!

E

�
1=3

G!ðDÞ ¼ 6��!R2

Ds

gs

�
D

Ds

�
;

gsð0Þ ¼ 0:838ð1þ i
ffiffiffi
3

p Þ lim
x!1gsðxÞ ¼

3

10x4
þ i

x
(2)

with the intermediate values of gs tabulated in [13]. As in
the thick film case, the agreement with the data obtained by
fitting the single parameter Ds is excellent. In particular,

our model predicts G0ð0Þ=G00ð0Þ ¼ 1=
ffiffiffi
3

p
as observed.

More precisely we find cutoff values Dsð19 HzÞ ¼ 109�
1 nm and Dsð69 HzÞ ¼ 170� 1 nm. Their ratio equals
to 0.647, which is very close to the theoretical ratio

ð19=69Þ1=3 ¼ 0:651. The derived value of the Young’s
modulus is E ¼ 1:3� 0:1 MPa. It is important to mention
that the main uncertainty in the value of E comes from the
value of the film thickness � ¼ 4:4� 0:1 �m.
A third example is the case of individual, compressible

objects resting on a rigid surface, such as bubbles. We
illustrate this case with an array of microbubbles embedded
in the holes of a textured, hydrophobic surface (Fig. 4). The
fluid probe is a water-glycerol mixture of viscosity
� ¼ 39� 2 mPa � s. In a previous study, we showed that
running nanorheology experiments with the dynamic SFA
on such a soft surface allowed us to measure the surface
stiffness of the bubble mattress, defined as 	n with 	 the
stiffness of a single bubble and n the number of bubble
per unit surface [18]. We want to stress here that this
configuration is formally equivalent to a compressible
layer of thickness � and uniaxial compression modulus
E0 ¼ Eð1� �Þ=ð1� 2�Þð1þ �Þ ¼ 	n�. When the vis-
cous stress R=2�RD is applied by the fluid probe, the
compressible layer indents as � ¼ �R=2�RDE0, and its
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FIG. 3 (color online). (a) The scaled force response
G!ðDÞDs=6��!R2 measured on a PDMS film of thickness
4:4 �m at two frequencies: f ¼ 69 Hz (with Ds ¼ 170 nm)
and f ¼ 19 Hz (with Ds ¼ 109 nm). Blue: real part, red: imagi-
nary part. The sphere radius is 3 mm and the liquid viscosity is
43� 2 mPa � s. The black continuous line is the master function
gs. (b) The force response G!ðDÞ as a function of D in linear
scale for the two frequencies. The continuous black lines are
plots of the scaled master function gs [right-hand side (rhs) of
Eq. (2)].
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effective stiffness for the spring-and-dashpot model is

kðDÞ ¼ 2�RDE0=�. The associated cutoff length is Dn ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�!R�=E0p

and the real part decays as ð!�Þ2=k� 1=D3

in the viscous regime as observed in Fig. 4. The theoretical
EHD response has the form:

Dn ¼
�
2�!R�

E0

�
1=2

G!ðDÞ ¼ 6��!R2

Dn

gn

�
D

Dn

�
;

gnð0Þ ¼
ffiffiffiffiffiffiffiffi
2=3

p ð1þ iÞ lim
x!1gnðxÞ ¼

1

2x3
þ i

x
(3)

with the master function gn tabulated in [13]. Once again,
the agreement with the experimental data is excellent. The
values found for Dn at 19 and 69 Hz, respectively 160 and
312 nm, are consistent with the same value of the mattress
stiffness 	n ¼ E0=� ¼ 1:1� 0:1	 1012 N �m as obtained
in [18]. This is expected at frequencies much lower than the
resonance frequency of the microbubbles [19]. Our model
also predicts, as observed, that G0ð0Þ=G00ð0Þ ¼ 1. This

example demonstrates the nonintrusive character of the fluid
probe method, as any contact of a solid probe with the
bubbles would change their shape and alter their stiffness.
In conclusion, we demonstrate here with a SFA that

hydrodynamic interactions at a nanoscale provide a unique
tool for the quantitative testing of small and soft elastic
objects, allowing one to measure unambiguously their elas-
tic properties without contact. The interplay between vis-
cous and elastic effects results in a very rich scaling of the
force response and provides a signature of the surface elastic
behavior without the influence of adhesion forces. We have
chosen here to illustrate three different cases: thick layer,
thin compressible, and thin incompressible film, which obey
three different master functions. The excellent agreement of
the calculated scaling laws with the experimental data shows
that the method is suitable for measuring a wide range of
elastic moduli, depending only on the capabilities of the
experimental device. For the best resolution, the fluid probe
viscosity should be chosen such that the crossover distance
lies in the range of the available experimental distances
(typically 20 nm to 2 �m in our SFA). For instance, a
bulk glass with Young’s modulus E ¼ 60 GPa probed
at 100 Hz with a viscosity of 10�1 Pa � s corresponds to
Dc ¼ 24 nm, whereas a soft tissue of modulus 1 kPa probed
at 15 Hz with air (� ¼ 2	 10�5 Pa � s) gives a crossover
distance of 2:4 �m. A layer of 200 nm of the same material
probed at 100 Hz with water would have a crossover dis-
tance of 27 nm. This method thus opens the route for a
quantitative elastic imaging of soft surfaces. Using colloidal
probe atomic force microscopy would increase the fre-
quency range of this mechanical testing, allowing one to
probe the frequency dependence and possibly the viscoelas-
tic properties of soft thin films. For this, it is necessary to
measure the actual amplitude of the cantilever displacement
and not just its deflection.
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