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We present two powerful semiclassical formulas for quantum systems with classically chaotic

dynamics, one of them being the Fourier transform of the other. The first formula evaluates the

autocorrelation function of a state constructed in the neighborhood of a short periodic orbit, where the

propagation for times greater than the Ehrenfest time is computed through the contribution of homoclinic

orbits. The second formula evaluates the square of the overlap of the proposed state with the eigenstates of

the system, providing valuable information about the scarring phenomenon. Both expressions are

successfully verified in the Bunimovich stadium billiard.
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Themethod of semiclassical propagation is performed by
associating quantum states with Lagrangian manifolds [1]
in phase space, and the propagation is accomplished by the
evolution of manifolds [2]. Furthermore, the semiclassical
overlap of these states consists of an integration over the set
of submanifolds resulting from the intersection of
Lagrangian manifolds. Within this geometrical framework,
the famous Van Vleck propagator is clearly understood [3].
This propagator is the starting point of practically all theo-
retical developments in quantumchaos, theGutzwiller trace
formula [4] being an outstanding example. Nevertheless, it
suffers from three serious drawbacks. First, the Lagrangian
manifolds used are not time invariant; this fact is very
disappointing because the classical calculation must be
repeated for all times involved. Second, the determination
of each submanifold is a hard geometrical problem. Third,
the number of submanifolds increases exponentially for
times greater than the Ehrenfest time, this being a conse-
quence of the chaotic nature of the dynamics.

We eliminate the first two drawbacks mentioned above
by using a special quantum state, j�i, living in the neigh-
borhood of an arbitrary short periodic orbit, � [5]. This
state is constructed in such a way that all the points of the
periodic orbit are semiclassically equivalent; we could
think of a tube in phase space enclosing �, and with
constant cross section from a symplectic point of view.
Then, the forward (backward) propagation of j�i is de-
scribed by stretching the tube along the unstable (stable)
manifold of �; for this reason, the required Lagrangian
manifolds are the unstable and stable manifolds of �,
which are time invariant. Furthermore, finding the inter-
section of these manifolds is a simple task, it consists of the
set of homoclinic orbits (HOs) of �. In this respect, it is
worth mentioning that by using useful homoclinic canoni-
cal invariants [6] the integration along HOs is trivial.

Here we find the autocorrelation function of j�i through
a sum of HO contributions. Moreover, its Fourier transform

provides information about the scarring phenomenon [7];
specifically, it gives the scar intensities and their position
in the energy spectrum. Certainly, this information is rele-
vant for the analysis of recent observations in quantum
dots, optical microcavities, optical fibers, and graphene
sheets [8].
Semiclassical formulas.—The autocorrelation function

of j�i, presented for two degrees of freedom chaotic
Hamiltonians and evaluated for times satisfying jtj< �
(with � an arbitrary value greater than the Ehrenfest
time), results in

h�jeði=@ÞðE��ĤÞtj�i ’ Fð�tÞ

þ
ffiffiffi
@

p
�P

X
tA&�

fð�jtj � �tAÞffiffiffiffiffiffiffiffiffiffijLjAp ei�sgnðtÞ; (1)

where the phase � and the semiclassical time tA are given
by � ¼ ðS=@���=2Þ and tA ¼ logðA=@Þ=�, with E� the

Bohr-Sommerfeld energy of j�i, P the period of �, and �
its stability index. The sum runs over HOs of �, and each
HO (evaluated at energy E�) has four canonical invariants

[6]: the homoclinic action S, the homoclinic Maslov index
�, the relevance A, and the normalized Lazutkin invariant
L. S and A have units of action while L, being a ratio of
actions, has no units. Finally, the dimensionless real func-
tions F and f are given by

FðxÞ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
coshðxÞp

and fðxÞ ¼ ffiffiffi
2

p
e�x=2K0ðe�xÞ;

with K0 being the modified Bessel function of zero
order [9].
The function Fð�tÞ describes the autocorrelation of j�i

when interference at HOs is not included. On the other
hand, the switching function fð�jtj � �tAÞ turns on the
influence of a given HO when jtj is around tA, while
for jtj greater than �tA þ 4=� its influence decreases ex-
ponentially to zero [see Fig. 1(a)]. Notice that as a
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consequence of the switching function we only have to
compute HOs with tA & jtj.

The Fourier transforms of F and f ( ~F and ~f) are related
by

~fðxÞ ¼ ffiffiffiffiffiffiffiffiffi
�=2

p
~FðxÞeix�ðxÞ; (2)

with ~F and� [10] real even functions [see Fig. 1(b)]. Then,
with E� and j�i the set of eigenenergies and eigenstates,
and expanding j�i in this basis, j�i ¼ P

c�j�i, one has
after replacing Eq. (2) in the Fourier transform of Eq. (1)

X
�

jc�j2gðE�E�Þ ’ ~F

�
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cosðc ÞffiffiffiffiffiffiffiffiffiffijLjAp
�
; (3)

with gðEÞ ¼ ffiffiffiffiffiffiffiffiffi
2=�

p
@� sinðE�=@Þ=E, ! ¼ ðE� E�Þ=@,

and c ¼ �ð!=�Þ!=�þ!tA þ �. The factor ~Fð!=�Þ in
Eq. (3) identifies those regions of the spectrum where � is
relevant [7], while the other factor (which mimics the
Gutzwiller formula) provides a detailed description of the
eigenstates influenced by �; this influence was named
scarring by Heller [7].

Resonances.—The state j�i has a simple representation
in configuration space by using local coordinates on �
[5,11]. The so-called resonance is the product of two
functions: a local plane wave along �, and a transverse
wave packet that evolves according to a modified dynamics
(we eliminate the contraction-expansion contribution to
the motion in the vicinity of �). After one turn around �
the wave packet accumulates the phase S�=@����=2,

which is an integer multiple of 2� when the energy is E�,

where S� and�� are the action and Maslov index of �. For

billiards, explicit expressions are easily obtained [12]; in
particular, the normalized even-even resonance of the hori-
zontal periodic orbit in the Bunimovich stadium billiard
with n nodes between Aðx ¼ 0; y ¼ 0Þ and Bðx ¼ 2;
y ¼ 0Þ [see Fig. 1(c)] is given by [13]

’nðx; yÞ ¼ NnðxÞe�½kny2=2BðxÞ� cos½knxþ gðxÞkny2=2
�	ðxÞ=2�; (4)

where BðxÞ ¼ ð1=aþ ax2Þ coshð2�xÞ � 2x sinhð2�xÞ,
gðxÞ ¼ ½ax coshð2�xÞ � sinhð2�xÞ�=BðxÞ, NnðxÞ ¼
½kn=�BðxÞ�1=4, and 	ðxÞ¼ sgnðxÞfarctan½e2�jxjðajxj�1Þ=
ðajxjþ1Þ�þ�=4g, with a¼1=

ffiffiffi
2

p
, �¼ logð3þ ffiffiffi

8
p Þ=4,

the Bohr-Sommerfeld wave number kn ¼ ðnþ 3=4Þ�=2,
and the function arctanð:Þ taking values in the range
(� �=2, �=2). In order to simplify the interpretation of
the results, the velocity of the classical particle is taken as
unity; in this way, the stability index � has units of
½length�1�, the period of the desymmetrized horizontal
periodic orbit is P¼4 (the length going from A to B and
back to A), E�=@ ¼ kn=2, and!¼ðk2�k2nÞ=2kn�k�kn.

Derivation.—The lhs of Eq. (1) is the overlap

ðh�jeði=@ÞðE��ĤÞt=2Þðeði=@ÞðE��ĤÞt=2j�iÞ; (5)

where the ket is a forward evolution (by t=2) of j�i and the
bra is a backward evolution (also by t=2) of h�j. So, from a
semiclassical point of view the ket (bra) is a state described
by the unstable (stable) manifold of �. The method used to
evaluate overlaps between this type of semiclassical wave
function was developed in Refs. [6,14]. The overlap con-
sists of a term associated with the intersection of manifolds
at the periodic orbit, plus a sum of contributions related to
the intersection of manifolds at HOs. In the case of Eq. (5)
one has for t > 0

h�jeði=@ÞðE��ĤÞtj�i ’ Fð�tÞ þ ffiffiffiffiffiffiffiffiffi
2�@

p X
F0ðtÞei�;

where F0ðtÞ computes at time t the accumulated contribu-
tion to the amplitude of a given HO (see [6]),

F0ðtÞ ¼ 1

P
ffiffiffiffiffiffiffijLjp Z 1

�1
Gð ffiffiffiffi

A
p

e�t
0
; t=2ÞGð ffiffiffiffi

A
p

e��t0 ; t=2Þdt0;

(6)

with Gðq; tÞ ¼ ð�@Þ�1=4 expð�q2e�2�t=2@� �t=2Þ being
a wave packet that evolves under the action of the quantum
counterpart of the hyperbolic Hamiltonian �pq. Here the

factor Gð ffiffiffiffi
A

p
e�t

0
; t=2Þ [Gð ffiffiffiffi

A
p

e��t0 ; t=2Þ] is the amplitude

along the unstable (stable) manifold, and
ffiffiffiffiffiffiffijLjp

is a non-
linear correction to the linear behavior produced by �pq.

The integral in Eq. (6) is equal to e��t=2K0ðe��tA=@Þ=
ð� ffiffiffiffiffiffiffi

�@
p Þ; then, by using the definitions of fðxÞ and tA we

arrive at Eq. (1) for t > 0. For t < 0, the ket (bra) in the
overlap lives on the stable (unstable) manifold, so the
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FIG. 1 (color online). (a) Switching function fðxÞ (solid), and
FðxÞ (dashed). (b) Even functions ~FðxÞ (solid) and �ð3xÞ=2
(dashed). Contour lines at �0:4=

ffiffiffi
2

p
of (c) ’16ðx; yÞ, (d) real

part of an evolution of ’16ðx; yÞ, and (e) imaginary part of the
same evolution. Also, contour lines at 0.5 and 1 of a sequence of
propagated probability densities of ’16ðx; yÞ.
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phase � changes by ��, and the integral in Eq. (6) is the
same by replacing t with �t.

The Fourier transform of the left-hand side of Eq. (1)
includes the window jtj< � because the right-hand side
goes immediately to zero for jtj> �. Moreover, the Fourier
transform of F (and f) is not affected by such a window
because � is greater than ��1, the maximum time where
Fð�tÞ is relevant.

Classical tools.—The classical calculation is a simple
task on a Poincaré surface of section. Here we use Birkhoff
coordinates: q measures the position of a bounce on the
desymmetrized boundary (see Fig. 2), and p is the fraction
of momentum tangent to the boundary. The horizontal
periodic orbit is represented by the fixed point B (q ¼
1þ �=2, p ¼ 0), and its stable and unstable manifold

directions by the vectors 
s ¼ 2�1=4ð�1;�1=
ffiffiffi
2

p Þ and


u ¼ 2�1=4ð�1; 1=
ffiffiffi
2

p Þ, normalized by the relation 
u ^

s ¼ 1. Then, a point on the unstable direction close to
B is given by Bþ �
u (with j�j � 1), and its forward
evolution after � steps on the section, z ¼ M�ðBþ �
uÞ,
lives on the unstable manifold (M is the map on the
desymmetrized section). Moreover, we associate with z
the parameter u ’ �e��P (with relative error �) and then,
one gets the vector 
uðuÞ ¼ dz=du tangent to the unstable
manifold on the section (of course, 
uð0Þ ¼ 
u). In the
same way Bþ �
s is a point on the stable direction close
to B, and its backward evolution after � steps, z ¼
M��ðBþ �
sÞ, lives on the stable manifold; in this case
we associate with z the parameter s ’ �e��P, obtaining the
vector 
sðsÞ ¼ dz=ds tangent to the stable manifold on the
section.

In Fig. 2 we calculate pieces of stable and unstable
manifolds by taking 0< � � 1=12 and � ¼ 3 (notice
that at q ¼ 0 and q ¼ 1þ �=2 manifolds change the

sign of p). The intersection of these pieces of manifolds
provides homoclinic points corresponding to 8 different
HOs (with � ¼ 4, we find 56 HOs). The trajectories 4 and 5
are not time reversible, so each of them correspond to 2
HOs. The other trajectories, being time reversible, have
one turning point (for instance, the points a, c, e, and g of
trajectories 1, 6, 7, and 8).
Invariants.—Here we discuss the evaluation of the ca-

nonical invariants used in Eqs. (1) and (3). Let z0 be a
homoclinic point with parameters u0 and s0. Then, the
sequence of points zj ¼ Mjz0 for j an integer, with pa-

rameters uj ¼ ej�Pu0 and sj ¼ e�j�Ps0, defines the HO on

the Poincaré surface of section. Associated with the HO on
the section one has

AP ¼ u0s0 and LP ¼ 
uðu0Þ ^ 
sðs0Þ

uð0Þ ^ 
sð0Þ ;

LP was introduced in Ref. [15] without including the
denominator. These quantities take the same value for all
the points of the sequence and, moreover, they are invar-
iants with respect to canonical transformations on the
section; however, they depend on the selected Poincaré
surface of section. On the other hand, the relevance, A,
and the normalized Lazutkin invariant, L, defined in
Ref. [6] take the same value for all the points of the HO,
being invariants with respect to general canonical trans-
formations. The interesting point is that they can be eval-
uated on the section as follows

A ¼ e�TDAP and L ¼ e��TDLP;

where TD ¼ Pðtj;jþ1 � PÞ is a sum over the sequence of

points, with tj;jþ1 being the time for going from zj to zjþ1.

The homoclinic action and the homoclinic Maslov index
are also evaluated over the sequence of points as S ¼PðSj;jþ1 � S�Þ [16] and � ¼ Pð�j;jþ1 ���Þ, where

Sj;jþ1 is the action for going from zj to zjþ1, and �j;jþ1

is the corresponding angle swept by the unstable manifold
direction divided by �. Here � is equal to minus the
number of bounces with the straight line of the stadium
boundary [17]; for instance, � ¼ �1, 0,� 2,�1, �1, 0,
�2, �2 for the HOs from 1 to 8 of Fig. 2. For complete-
ness, we also provide approximated values of the other
invariants as ð�S=ð@knÞ; A=ð@knÞ; LÞ: (3.368, 1.4,1.0),
(2.991, 1.7, �1:3), (5.952, 5.9,0.8), (5.908, 7.1, �1:0),
(6.758, 4.0,1.7), (6.708, 3.3, �2:0), (6.917, 7.3, �1:1) and
(6.565, 14.3, 0.9).
Numerical results.—The quantum calculation of the au-

tocorrelation function is performed by expanding the reso-
nance ’nðx; yÞ in the basis of even-even eigenfunctions,
normalized to unity on the half stadium of Fig. 1(c). For the
semiclassical calculation, to each HO of the quarter of
stadium (see Fig. 2) corresponds two HOs of the half
stadium [18]. So, the contribution of the trajectory number
1 (4) has to be included two (four) times in Eq. (1) [and
Eq. (3)]. Figure 3 presents these calculations for 8 and 56
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FIG. 2 (color online). Pieces of unstable (solid) and stable
(dashed) manifolds of the horizontal periodic orbit (B) on the
desymmetrized Poincaré surface of section in Birkhoff coordi-
nates q� p. Some points on the unstable manifold with integer
values of the parameter u are indicated with (þ). The intersec-
tion of manifolds provides 8 HOs plotted on the right (the arrows
indicate that they go asymptotically to the horizontal periodic
orbit).
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HOs, showing a satisfactory accord up to 2tE and 3tE,
respectively, where the Ehrenfest time is given by tE �
logðSP=@Þ=2� ¼ log½ð2þ �Þkn�=2�, with SP the area of
the Poincaré section at energy E�.

Figure 4 displays jc�j2, the square modulus of the
overlap of the resonance with the even-even eigenstate at
wave number k�, as a function of Nðk�Þ. NðkÞ ¼
ð1þ �=4Þk2=ð4�Þ provides the mean number of even-
even eigenstates with wave number smaller than k (so,
the mean level spacing is unity). These coefficients are
compared with the semiclassical estimate given by the
right-hand side of Eq. (3), which is normalized in such a
way that the sum of the maxima is equal to one. The figure
shows that 8 HOs are sufficient to predict the scarring
intensities of the first 100 eigenstates, while 56 HOs im-
prove the position of the maxima (see the case n ¼ 16); of
course, the error of the semiclassical prediction increases
considerably for the smallest values of jc�j2.

Remarks and conclusions.—Our conclusions are as
follows:

(1) The semiclassical formula [Eq. (3)] is probably not
convergent in the present form for the same reasons as the
Gutzwiller is not; to answer this question it is necessary to
establish the asymptotic behavior of the number of HOs as
the relevance, A, increases. Then, to find eigenvalues up to
the mean level spacing we should use resummation tech-
niques as they were used to improve the convergency of the
Gutzwiller formula [19]. Following this speculation and
having in mind that our formalism puts the time and energy
domains on equal footing, we believe that Eq. (1), im-
proved with resummation techniques, ensures semiclassi-
cal propagation up to the Heisenberg time.
(2) The generalization to more than two degrees of free-

dom should be almost straightforward. Of course, it is
necessary to generalize the defined homoclinic invariants.
Moreover, the correlation function between states living on
different periodic orbits should be treated in a similar way.
In this case, it is necessary first to identify the relevant
canonical invariants associated with heteroclinic motions.
(3) An evident application of Eq. (1) is the long time

propagation of wave packets; this is performed by expand-

ing the wave packet in a basis of resonances associated

with a given periodic orbit. In this respect, in Ref. [20]

there is an interesting numerical computation of the propa-

gation of wave packets (in the stadium billiard) in terms of

HOs; however, this calculation suffers from the same draw-

backs as the Van Vleck formula.
(4) An interesting semiclassical criterion for scars in

terms of periodic orbits was presented in Ref. [21]; how-
ever, it needs an enormous number of periodic orbits to find
scars in the low energy spectrum (up to the first 100
eigenstates).
(5) Lagrangian manifolds have attracted an increasing

interest in semiclassical developments. They were used to
propagate wave packets up to the Ehrenfest time [22], and
also to simplify the usual semiclasscial rules [23].
(6) The value of the invariant L depends on the nonline-

arity of the manifolds in the vicinity of the HO. In the
stadium, the highest values of L correspond to
whispering-gallery HOs (5 and 6 of Fig. 2). In chaotic linear
maps, L ¼ 1.
Equation (1) shows the way to deal with long time

dynamics. It is mandatory to use the stable and unstable
manifolds of periodic orbits because they are time invari-
ant. Furthermore, as the intersection of these manifolds
consists of the set of homoclinic and heteroclinic orbits, it
is also mandatory to find those canonical invariants that are
able to capture the contribution of these orbits easily.
Equation (3) is the product of two factors. The first

factor is related to the periodic orbit itself and only con-
tains information of the short time dynamics, while the
second factor incorporates the long time dynamics through
the contribution of HOs. A remarkable point about this
formula is that a few HOs are sufficient to provide relevant
quantum information in the low energy spectrum.
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FIG. 3 (color online). Quantum calculation of the autocorre-
lation (solid), and its semiclassical approximation given by
Eq. (1), with 8 HOs (dashed) and 56 HOs (short-dashed). On
the left, the real and imaginary part as a function of t; for t > 15
the upper dashed line corresponds to the imaginary part. On the
right, the modulus as a function of the time in units of the
Ehrenfest time. n is defined in Eq. (4).

N(k)

 0

 0.5

 1

 50  60  70  80

 0

 0.5

 1

 20  25  30  35  40

n=16

N(k)

n=7 n=8 n=9 n=10

n=11 n=12 n=14n=13

 0

0.2

0.4

 96  100

FIG. 4 (color online). Representation of jc�j2 as a function of
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(dashed). n is defined in Eq. (4).
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