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Supélec, OPTEL Research Group, Laboratoire Matériaux Optiques, Photonique et Systèmes (LMOPS),
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We demonstrate that modulation instability leading to optical pattern formation can arise by using

nonconventional counterpropagating beams carrying an orbital angular momentum (optical vortices).

Such a vortex beam is injected into a nonlinear single feedback system. We evidence different complex

patterns with peculiar phase singularities and rotating dynamics. We prove that the dynamics is induced by

the vortex angular momentum and the rotation velocity depends nonlinearly on both the vortex topological

charge and the intensity of the input beam.
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Photon orbital angular momentum has been a subject of
growing interest. A beam carrying such a momentum, called
an optical vortex, has a helicoidal wave front and a ring-
shaped intensity profile [1] (Fig. 1). The electric field of
such a beam can be written in cylindrical coordinates as
Eðr; �; zÞ ¼ uðr; zÞeic�e�ikz. k ¼ kẑ is the wave vector
and c is an integer called the topological charge indicating
phase fronts which are c intertwined helical surfaces. The
orbital angular momentum carried by each of the beam
photons is equal to c@. Contrary to the spin angular momen-
tum associatedwith the polarization structure of the light, the
orbital angular momentum relies on the photon phase prop-
erty. Therefore, optical vortices are of both fundamental and
application interest. For example, such beams are used as
‘‘optical tweezers’’ or actuators in biophysics [2], micro-
mechanics, and microfluidics [3], or for extra solar planet
detection [4]. In optics, propagation of vortices in nonlinear
materials shows many interesting phenomena such as
frequency conversion [5], wave mixing [6], beams’ self-
trapping, or peculiar instabilities: spiraling multipoles and
azimuthons [7]. While propagating through a nonlinear me-
dium, a common laser beam may also become unstable
against a mechanism calledmodulation instability. This later
develops at a characteristic transverse length, resulting in the
appearance of correlated satellite beams (pattern) that grow
in preferential directions. Such a self-organization process is
commonly studied using broad co-(counter)propagating
Gaussian beams with wave mixing achieved in either cavity
[8–11] or single feedback systems [12–16]. Because of
unavoidable or voluntary misalignments in optical experi-
ments, pattern formation is usually accompanied by convec-
tive drifting dynamics resulting from a nonlocal coupling
between the propagating beams [17–19]. Pattern-forming
optical systems may also show phase singularities in the
transition to space time chaos [20]. Nevertheless, the effect
of a singular beam instead of a nonsingular one as the input
pump of a pattern-forming system remains unexplored.

In this Letter, we force our nonlinear single feedback
experimentwith anoptical vortex and shownontrivial pattern

dynamics. Complex rotating hexagonal patterns with phase
singularities in the satellite beams are evidenced in good
qualitative agreement with recent numerical predictions
[21]. Contrary to dynamics sustained by noise observed in
convective regimes [17,18], we prove that the dynamics is
here induced by the vortex orbital angular momentum.
Our demonstration is based on the experiment depicted

in Fig. 1. It consists of a photorefractive cobalt doped
barium titanate crystal (BaTiO3:Co, 6� 6� 6 mm3) in a
single feedback configuration. The lens L1 imposes the
input beam size. The feedback mirror, placed behind the
lens L2, can be precisely moved longitudinally to vary
the position of the corresponding virtual mirror (VM)
created by the 2f:2f imaging system (Fig. 1). This allows
adjustment of positive (mirror outside the medium) or
negative (mirror inside the medium) effective diffraction
lengths [22]. We limit our study to the case where the VM
is placed at the back face of the crystal. The crystal is

FIG. 1 (color online). Experimental setup. Computer gener-
ated hologram (CGH) printed on glass. (a) Interference picture
between a vortex beam and a plane wave. (b) Far-field pattern
obtained by linear diffraction after a beam splitter (BS) and
corresponding to the Fourier transform of the near field observed
on picture (c). In picture (b), the central spot has been removed
to emphasize the satellite beams.

PRL 108, 263903 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending
29 JUNE 2012

0031-9007=12=108(26)=263903(4) 263903-1 � 2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.108.263903


oriented to provide strong energy coupling between the
two counterpropagating beams. The angle between the
spontaneous polarization ĉ axis of the BaTiO3: Co crystal
and the optical axis of the system is set to approximately
25�. For this orientation of the crystal, the large electro-
optic coefficient r22 gives a strong contribution to the
photorefractive response, leading to a two-wave mixing
amplification in backward direction [23]. A continuous
frequency-doubled Nd:YAG laser emitting at 532 nm is
used as the coherent light source. To generate an optical
vortex, the laser beam is sent through a transmission grat-
ing with a fork-shaped geometry (Fig. 1). Depending on
the number of dislocations in the mask, vortices of differ-
ent topological charges can be selected in the diffraction
orders [24]. Finally, the observation of the far and corre-
sponding near field is realized by projecting the backward
beam, after passage through the crystal, on a CCD camera.

First, we consider the situation where the system is
driven by a conventional Gaussian beam (c ¼ 0). Such
an experimental configuration has already proved its ca-
pacity to generate light self-organization due to modulation
instability [16]. Depending on the distance of mirror-
crystal and above a certain intensity threshold, a large
number of unstable pattern modes can be formed but
only a few of them are selected such as stripes or hexagons.
The pattern selection intrinsically implies a spontaneous
breaking of the translation and rotation symmetry in the
system. By varying the feedback mirror tilt angle, an addi-
tional breaking of the reflection symmetry gives rise to
various pattern geometries. The new pattern modes are
usually accompanied by an advectionlike effect giving
rise to convective instabilities sustained by noise [19].

The scenario changes when counterpropagating
Gaussian beams are substituted by vortices. We first inject
a c ¼ þ1 vortex beam. To test the vortex topological

charge, thus the efficiency of the fork grating, we tempo-
rarily remove the feedback mirror and monitor the inter-
ference pattern composed by the first diffraction order of
the grating and a plane wave. The resulting dislocation in
the center of Fig. 1(a) indicates a c ¼ þ1 vortex beam.
Second- or third-order dislocations are observed for corre-
sponding higher c ¼ þ2, c ¼ þ3. For negative topologi-
cal charges, a forklike interference pattern similar to
Fig. 1(a) is observed but in the opposite direction.
The first example of vortex induced pattern formation is

the one shown in Figs. 1(b) and 1(c). The feedback mirror is
placed at the back face of the crystal and the intensity of
the focused vortex beam can be set from 1 to 100 W=cm2.
For an intensity close to 10 W=cm2, modulation instability
occurs and the system bifurcates to a dynamic pattern state.
As for the Gaussian case, we measure an angle � � 1�
between the central spot of the backward beam and the
emerged satellite beams, consistent with previous observa-
tions [13]. The pattern of near-field intensity distribution
looks like a honeycomb structure inside the vortex ring
[Fig. 1(c)]. The white arrow indicates a rotating dynamics
around the dark center where no instability pops up. The
corresponding far field shows complex satellite beams be-
longing to a circle of instabilitieswhere black lines arevisible
on top of the satellites [Fig. 1(b)].A close inspection of the far
field indicates the presence of dislocations. Figures 2(a)–2(c)
represent the far-field patterns for three different vortex
topological charges. The interferogram between one of the
satellites and a plane wave is shown on Figs. 2(d) and 2(e).
The zoom on Fig. 2(e) illustrates a first-order dislocation
indicating the presence of c ¼ 1 vortices in the satellites of
the far-field pattern. By injecting vortices with higher topo-
logical charges (c ¼ 2, c¼3), far-field patterns become
more complex [Figs. 2(b) and 2(c)] as predicted in [21] and
whatever the input charge is, the satellite beams are all
composed by charge 1 vortices. Closely linked to what we
observed but in a different context of beam propagation,
similar results occur in anisotropic nonlinear media where
the propagation of a vortex with a high topological charge
may decay in several first-order vortices [25].
Although the structure of the satellite beams is not

affected by the vortex topological charge, the dynamics
of the near-field pattern changes drastically. Figure 3 dis-
plays a rotating dynamics for two different input vortices:
c ¼ þ1 and c ¼ �3. The beam waist of the first vortex
(c ¼ 1) is equal to 290 �m. The second one (c ¼ �3) is
equal to 340 �m. The values correspond to measurements
realized by the ’’knife-edge’’ technique [27]. The time
difference between two consecutive images is equal to
0.6 sec. Independent of the different topological charges,
we first notice that the near-field patterns do not differ.
We identify a honeycomblike self-organization similar to
classical hexagonal pattern observed in experiments with
counterpropagating Gaussian beams [13,16]. Nevertheless,
the pattern is here accompanied by a rotating dynamics

FIG. 2 (color online). (a)–(c) Far-field patterns obtained with
different vortex topological charges c ¼ 1, c ¼ 2, and c ¼ 3,
respectively. (d)–(e) Zoom on the interference pattern between a
part of the satellite beams and a plane wave. A first-order
dislocation is visible inside the white square (e).
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depending on the sign of the topological charge. For posi-
tive charges [c ¼ þ1, Figs. 3(a)–3(d)], the sense of rotation
is counterclockwise and clockwise for negative values
[c ¼ �3, Figs. 3(e)–3(h)]. Contrary to common advection-
like effect imposed by a nonlocal coupling of the counter-
propagating beams [17,18], the rotating dynamics is here
induced by the intrinsic orbital angular momentum of the
vortex. Similar results are obtained for pairs of opposite
topological charges (c ¼ �1, c ¼ �2, c ¼ �3).

By knowing the time separation between two consecutive
pictures, the distance travelled by one spot (red squares in
Fig. 3) and the radius of the vortex, one can calculate the
linear and angular velocities of the rotation. For c ¼ 1, the
angular velocity is v ’ 0:15 rad=s and for c ¼ �3 it is v ’
0:17 rad=s. These results suggest that the rotation velocity
depends on the vortex topological charge. Furthermore, it is
worthmentioning that due to photorefractive effect, the input
beam intensity influences both the gain and the response time
of the two-wave mixing interaction geometry in the crystal
[28] and might also have impact on the pattern velocity. All
these results are presented in Fig. 4. We study for different
topological charges (c ¼ 1, 2, 3) the dependency of the
pattern near-field angular velocity versus the input beam
intensity. For fruitful comparisons, the power and the beam
waist of the different vortices have been adjusted to have the
same intensity at the input face of the crystal. First, we
see that all the curves start at the same input intensity equal
to 10 W=cm2. Below this threshold value, it is difficult to
clearly identify a pattern state and therefore impossible to
measure a rotation velocity. Second, we observe that the
velocity grows with the input intensity. For c ¼ 1 the veloc-
ity increases from 0:10 to 0:17 rad=s, c ¼ 2 from 0.12 to
0:20 rad=s, and c ¼ 3 from 0.12 to 0:21 rad=s. These results
seem consistent with the fact that, as already mentioned, the
increase of the input intensity leads to a faster response time
of the photorefractive effect. The corresponding mean linear

velocity is of tens of micrometers per second, which corre-
sponds to the relatively slow time response of the photore-
fractive barium titanate crystal that is of the order of second.
A saturation effect appears for intensities above 25 W=cm2

and is more pronounced for higher charges c ¼ 2 and c ¼ 3
(Fig. 4). This effect could be linked to the saturation property
of the photorefractive nonlinearity [29]. Finally, one can
notice that the pattern velocity increases nonlinearly with
the topological charge. For an input intensity equal to
20 W=cm2 (below the saturation effect), the velocity in-
creases from 0:15 rad=s for c ¼ 1 to 0:17 rad=s for c ¼ 2
and c ¼ 3. These velocities correspond respectively to rota-
tion periods of 43 sec for c ¼ 1 and 36 sec for c ¼ 2 and
c ¼ 3. The increasing values of the velocity versus the
topological charges stem from the linear definition of the
vortex orbital angular momentum: the higher c is, the faster
the vortex energy flow runs. However, the nonlinear evolu-
tionmay derive from the interplay between the vortex orbital
angular momentum and the nonlinear mechanism of modu-
lation instability. All these observations demonstrate that the
rotation velocity depends nonlinearly not only on the input
intensity but also on the vortex topological charge. These
results should be compared with our previous theoretical
study [21]. Although our model does not account for many
of the experimental complexities (in particular, the intensity
dependency), theory and experiment agree qualitatively on
the facts that the mean rotation period ranges from 10 to 100
times the photorefractive time constant and the rotation
period varies nonlinearly with c, although the difference
remains small (max 15%).
In summary, we have shown experimentally that the

peculiar transverse phase property of a vortex beam
induces new interesting phenomena in a pattern-forming
system. We investigated a photorefractive single feedback
experiment where a vortex beam was used as the input
beam. Above a certain intensity threshold, modulation

FIG. 3 (color online). Rotation dynamics of the near-field pattern over time for an intensity of the input beams equal to 20 W=cm2 at
the crystal input face. First line (a)–(d): c ¼ þ1. Second line (e)–(h): c ¼ �3. The vertical arrows (d),(h) indicate the direction of
motion of one spot located in the red square. The white arrows show the global counter or clockwise rotation of the pattern [26].
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instability occurs and honeycomb patterns arise in near
field. The self-organization is accompanied by a rotating
dynamics of a few tens of micrometers per second around
the dark center. The sense of rotation depends on the
sign of the topological charge and the rotation velocity
grows nonlinearly with both the vortex charge and the
input beam intensity. Contrary to convective dynamics
sustained by noise, the dynamics is here induced by the
vortex orbital angular momentum. Finally we noticed that
whatever the vortex topological charge is, the correspond-
ing far-field patterns display complex distributed satellite
beams with first-order phase dislocations. In a more gen-
eral context of pattern formation, this result suggests that
the geometry of the pattern components depends strongly
on the input beam profile.

From the fundamental side, an extension of this work
might be the study of the interplay between convective
dynamics produced by an intentional nonlocal coupling be-
tween two counterpropagating vortices and a rotating dy-
namics induced by the vortex orbital angular momentum. An
other interesting issue is the management of the individual
components of the rotatingpattern. This could lead, similar to
the manipulation of drifting cavity solitons [30], to innova-
tions towards optical buffers and delay lines applications.
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