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To date, all experiments in nonlinear statistical optics have relied on beams whose transverse spatial

statistics were Gaussian. Here, we present a new technique to generalize these studies by using a spatial

light modulator to create spatially incoherent beams with arbitrary spectral distributions. As a specific

example of the new dynamics possible, we consider the spatial modulation instability of a partially

coherent beam. We show that, for statistical beams of uniform intensity and equal correlation length, the

underlying spectral shape determines the threshold and visibility of intensity modulations as well as

the spectral profile of the growing sidebands. We demonstrate the behavior using statistical light, but the

results will hold for any wave-kinetic system, such as plasma, ultracold gases, and turbulent acoustic

waves.
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While the linear theory of statistical light propagation is
nearly 50 years old [1,2], the nonlinear theory has been
studied for little more than a decade [3–16]. As in the linear
case, the initial results were generalizations of their coher-
ent counterparts, this time provided by the seminal obser-
vations of random-phase solitons [3] and incoherent
modulation instability [7]. Incoherent dynamics can be
far richer, though, as it depends not only on the spatial
profile of the beam but also on the spectral structure of its
modes. For example, more general wave-kinetic dynamics
were observed recently in the form of bump-on-tail insta-
bilities [13] and spatial optical turbulence [14]. To date,
however, only a limited number of distributions has been
considered. More specifically, experiments done with spa-
tially incoherent light have relied on quasithermal
Gaussian distributions, while most theory has been
performed for Lorentzian distributions. Other common
distributions, such as quantum distributions and hyper-
Lorentzian profiles [17], have not been explored for optical
beams. Even more striking, relevant distributions within
classical optics, such as fractal profiles [18] and natural
image statistics [19], have not been considered either, a
fact made more pressing by the recent discovery of
instability-driven imaging [16]. Here, we use a spatial light
modulator to experimentally create different spectral pro-
files and observe their corresponding nonlinear propaga-
tion. We use modulation instability as a particular example,
but it is clear that the ability to change spectral distribu-
tions introduces a new degree of freedom into the study of
nonlinear statistical dynamics, both within and beyond
optics.

Modulation instability (MI) is a fundamental instability
in which self-focusing perturbations extract energy from a
broad-scale background, leading to the growth of small-
scale perturbations. In coherent optics, for example, noise

will immediately trigger the growth of modes, with the
dominant spatial scale determined by a balance between
nonlinearity and diffraction. For partially coherent light,
perturbations have difficulty extracting energy from the
incoherent background, as statistical dephasing competes
with mode coupling. For distributions with smooth (differ-
entiable) power spectra, there is a nonlinear threshold for
instability [6,12].
Theoretically, several different theories have been pro-

posed to describe the nonlinear propagation of partially
coherent beams, all of which are equivalent [9]. Here, we
use the mutual coherence function approach, which in the
paraxial approximation is [5,6]
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where fðr1; r2; zÞ ¼ hE�ðr2; z; tÞEðr1; z; tÞit is the time-
averaged mutual coherence function between two points
r1 and r2, E is the slowly varying amplitude of the electric
field, r ¼ ðr1 þ r2Þ=2 is the center-of-mass coordinate,
� ¼ r1 � r2 is the separation coordinate, k ¼ �=2� is
the wave number for light of wavelength �, n0 is the
base index of refraction, and �n is the nonlinear index
change induced by the local light intensity I ¼ fðr1; r1; zÞ.
We are interested in intensity modulations around a

uniform background distribution. The envelope response
can be considered perturbatively by linearizing Eq. (1)
around an initially homogeneous intensity profile. For
simplicity, we perform the calculations for an inertial
Kerr medium with �n ¼ �hIit (the case for the photore-
fractive nonlinearity, as used in the experiments, is simi-
lar). Reducing the system to one transverse dimension and
writing fðx; kx; zÞ ¼ f0ðkxÞ þ f1 exp½gzþ i�x� gives the
dispersion relation [6]
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The appropriate coherence function f0ðkxÞ can then be
substituted and solved for the growth rate g for a particular
perturbation mode �. For example, a Lorentzian distribu-
tion with a spectral spread of kx0, f ¼ ðI0kx0=�Þ=ðkx2 þ
kx0

2Þ, allows Eq. (2) to be solved exactly, giving the

dispersion relation [6]
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This expression shows clearly that the gain rate for
coherent MI must overcome the statistical nature of the
light, with a nonlinear threshold �nth;Lorentzian ¼ �I0 ¼
n0ðkx0=kÞ2.

A similar result holds for a Gaussian distribution,

fðkxÞ ¼ I0 expð�k2x= �k
2
x0Þ=

ffiffiffiffiffiffiffiffiffiffi
� �k2x0

q
(where �kx0 ¼ kx0

ffiffiffiffiffiffiffi
ln2

p
),

used in all the experiments to date [7]. In this case,
Eq. (2) cannot be solved exactly. However, for long-
wavelength modulations, the spectral difference in the
numerator can be approximated as �@xf [10,11,13]. At
the threshold for modulation instability, the growth rate
g ¼ 0, so that Eq. (2) gives [11]

�nth;Gaussian ¼ n0
2

� �kx0
k

�
2 � 0:72�nth;Lorentzian: (4)

For distributions with the same total intensity and full
width at half-maximum (FWHM), the Gaussian has a
lower threshold for modulation instability than the
Lorentzian. This is reasonable, since the Lorentzian dis-
tributes more modes at higher spatial frequencies than the
Gaussian.

This intuition also holds for a uniform beam with a
rectangular distribution, which contains all its modes
within its FWHM. To see this explicitly, consider the
profile given by frectangularðkxÞ ¼ ðI0=2kx0Þ for jkxj � kx0
and zero otherwise. This distribution also allows Eq. (2) to
be solved exactly, resulting in the growth rate [12]
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�
: (5)

For any positive value of the nonlinearity, there always
exists some finite wave number � for which the gain rate
remains positive. Theoretically, there is no nonlinear
threshold for instability, despite the statistical nature of
the beam. In practice, the finite width of the medium gives
a lower bound to the possible wave numbers, leading to an
effective threshold for the observation of modulations.

From these results, the prevailing argument has been that
distributions with smaller spectral tails give less competi-
tion for partially coherent MI. However, it is easy to show
that this intuition is incorrect and that the dynamics are
significantly more complex. To do this, we introduce an

exponential distribution (the Fourier transform of the
Lorentzian), fðkxÞ ¼ ðI0=2kx0Þ exp½� ln2jkx=kx0j�, which
is as smooth as the Lorentzian and Gaussian profiles but
has spectral tails which lie between the two. This distribu-
tion does not yield an analytic solution to Eq. (3), but its
threshold can again be obtained by approximating the
numerator as �@xf and setting g ¼ 0; the result is

�nth;exponential ¼ 1

�

n0
lnð4Þ

�
kx0
k

�
2 � 1:25 � n0 �

�
kx0
k

�
2
; (6)

where � � 0:577 is the Euler constant. This threshold is
the largest of all the cases, despite the fact that the
Lorentzian has the most energy in the high-k modes and
is therefore the ‘‘most statistical’’ of the distributions. This
momentum measure is misleading, though, as the disper-
sion relation (and thus threshold value) of the instability is
determined by an integral over the distribution. That is, it is
not clear a priori which modes contribute the most to the
dynamics. Since the FWHM is the same for all the distri-
butions, as are the zeroth-order and first-order moments
(total energy and center of mass, respectively), it was
natural to attribute the differences to the tails [6,11,12].
On the other hand, very little energy is contained in
the high-k modes. A better figure of merit, proposed
here, is given by the second-order momentR
�k
��k dkx½k2xfðkxÞ�=

R
�k
��k dkxfðkxÞ, taken to be band-

limited to provide convergence for the Lorentzian. While
the choice �k ¼ kx0 gives the correct threshold ordering,
the choice �k ¼ 2 � kx0 gives a better numerical match:
0.79 for the Gaussian:Lorentzian ratio and 1.12 for the
exponential:Lorentzian ratio, both of which are within
10% of their analytical values.
We now proceed to test these results experimentally. As

mentioned above, all previous demonstrations of partially
coherent modulation instability have been performed with
Gaussian distributions. To remedy this, we use the
setup shown in Fig. 1. The nonlinear medium is a 5� 5�
10 mm photorefractive SBN:60 (Sr0:6Ba0:4Nb2O6) crystal,

FIG. 1 (color online). Experimental setup. Light from a
532 nm laser is made partially spatially incoherent by passing
it through a rotating diffuser. A spatial light modulator then
reshapes the k-space spectrum before the beam is sent into a
photorefractive SBN:60 crystal. Light exiting the crystal is
imaged in both x space and k space.
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and the beam is from a 532 nm laser, polarized extraordi-
narily to take advantage of the electro-optic coefficient
r33 ¼ 235 pm=V. The crystal has a slow time response
(� 1 s), due to photoexcited charge transport, with a non-
linearity that is controllable by a voltage bias applied
across the crystalline c axis [4]. As in previous experi-
ments, we make a statistical beam by focusing the light
onto a diffuser that is rotated at a very fast rate
(� 200 Hz), so that the crystal sees only a time-averaged,
quasithermal intensity. The diffused light is then imaged
onto a spatial light modulator (SLM) so that it uniformly
fills the array, which is used to redistribute the Gaussian
profile into the desired spectral distribution. [While the
SLM could create a statistical distribution by itself, this
two-step process proved cleaner in the experiments, as the
resulting phase fluctuations are faster than the SLM could
provide (a refresh rate of �60 Hz)]. A cylindrical lens
placed after the SLM is used to optically Fourier transform
the modified spectrum onto the input plane of the crystal.
The output intensity and spectral distribution are moni-
tored using two CCD cameras: one in the near field (x
space) and one in the Fourier domain (k space).

We consider the four spectral distributions described
above: rectangular, Gaussian, Lorentzian, and exponential
distributions. Numerical and experimental pictures of the
spectral distributions are shown in Fig. 2. The four distri-
butions are normalized to the same 15 �W total power and
the same FWHM of 0:06 �m�1 [Figs. 2(a) and 2(c)]. In x
space, the beams have a uniform intensity across the entire
crystal face (so that the dark conductivity of SBN is
minimal) [7] and are virtually indistinguishable. If one

takes the spectral linewidth as a measure of the (transverse)
correlation length, then each beam has the same spatial
coherence properties. Alternatively, if one defines the spa-
tial coherence length as the width of the two-point corre-
lation function f0 [Fig. 2(b)], then there is some
subjectivity, as the curves drop off at different rates.
However, all of the correlation curves intersect at a
two-point separation distance of 16 �m (consistent with
the spectral FWHM), when the visibility [ðImax �
IminÞ=ðImax þ IminÞ] is 10%. Accordingly, we take this
value as the experimental metric for the onset of MI.
To observe modulation instability, we increase the non-

linearity by applying a voltage across the crystalline c axis.
Figure 3(a) shows intensity images in x space at the output
face of the crystal as a function of applied voltage. At
300 V, the beam with a rectangular spectrum has already
developed visible modulations while the beams with other
distributions show no signs of modulation. By 600 V, the
Gaussian distribution is beginning to break up but the
beams with Lorentzian and exponential spectra remain
flat. These latter spectra only began to display visible
modulations above 1200 V.
Cross sections of the intensity modulations are shown in

Fig. 3(b), showing the growth of perturbations with increas-
ing nonlinearity (voltage). In all but the rectangular distri-
bution at the highest voltages, the modulations retain the
sinusoidal form of linearized theory. This signifies that
higher-order terms in the crystal response, such as satura-
tion [4,6,7] and nonlocality [20], do not play a significant
role for most of the observations. Indeed, numerical simu-
lations of Eq. (1) (using a split-step beam propagation code

FIG. 2 (color online). Conditions at the input plane of a crystal. (a),(c) Cross sections of (a) simulated and (c) experimental Fourier
spectra. (b) Numerical plot of two-point fringe visibility describing spatial coherence; (d) x space and k space of rectangular, Gaussian,
Lorentzian, and exponential beams at input.

PRL 108, 263902 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending
29 JUNE 2012

263902-3



with 1000 interacting modes) with only a Kerr nonlinearity
show reasonable agreement with the experiment [Fig. 3(c)].

As a measure of the instability threshold, we record the
nonlinearity needed for the modulations to achieve a

visibility of 10%. The thresholds for the rectangular,
Gaussian, Lorentzian, and exponential are approximately
600, 800, 1200, and 1600 V, respectively. As predicted, the
Lorentzian has a higher threshold than the Gaussian.
Experimentally, the ratios of �nth;Gaussian=�nth;Lorentzian
and �nth;Lorentzian=�nth;exponential are 0.67 and 1.33, respec-

tively, in good accord with the theoretical values of 0.72
and 1.25. For the beam with a rectangular spectrum, which
has been predicted to have no instability threshold, small
modulations were visible at low voltages, even though we
have defined its threshold to be at 300 V.
Plots of the visibility of intensity modulations are shown

in Fig. 3(c). In addition to the obvious differences in
thresholds, the plots show clearly the differences in maxi-
mum visibility achieved by each beam, which are non-
trivial to calculate theoretically. The rectangular spectrum
achieves the highest visibility, followed by the Gaussian,
Lorentzian, and the exponential distributions, an ordering
which is consistent with the threshold behavior.
Having confirmed that x-space evolution is strongly

dependent on the spectral distribution, we now study how
different spectral distributions affect the evolution of the
spectral function itself. Intensity pictures of the Fourier
spectrum for the rectangular and Gaussian distributions are
shown in Fig. 4(a), along with cross sections at different
nonlinearities. It is clear from the figures that the spectral
distributions of the sidebands are simply scaled versions of
the main profile. To support this, we vary the width of the
rectangular spectrum; as shown in Fig. 4(b), the sidebands
continue to be rectangularly shaped, with their widths
matching the width of the initial distribution almost ex-
actly. While the initial matching is intuitive, as the scaling
follows directly from linearized perturbation theory, its
persistence into the strongly nonlinear regime is surprising.

FIG. 3 (color online). Experimental results. (a) Intensity images
at the output plane of a crystal for different nonlinearities (applied
voltages) and different spectra (R, rectangular; G, Gaussian; L,
Lorentzian; E, exponential). (b) Cross sections and (c) visibility of
intensity modulations. The solid lines in (c) show simulations of
the expected behavior using a beam propagation code.

FIG. 4 (color online). Evolution of angular spectrum.
(a) Evolution as a function of nonlinearity (applied voltage)
for Gaussian and rectangular distributions. The insets show fits
to Gaussians. (b) Angular spectrum at the output plane for a
rectangular spectrum at the same nonlinearity for different
widths of the initial spectrum. Inset: real-space intensity.
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To the best of our knowledge, this correspondence has not
been predicted previously.

In conclusion, we have experimentally demonstrated the
dependence of spatially incoherent modulation instability
on the underlying spectral distributions. Behavior is sig-
nificantly different for beams with the same intensity and
correlation lengths but different shapes of their spectral
distributions. These shapes determine both the nonlinear
threshold for modulations and the spectral profiles of the
growing sidebands. Even though we have looked at modu-
lation instability in particular, the results and experimental
setup open the door to all spectral and phase-space phe-
nomena in nonlinear statistical optics.
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