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The next generation of ‘‘intensity frontier’’ facilities will bring a significant increase in the intensity of

subrelativistic beams of ��. We show that the use of these beams in combination with thin targets of

Z� 30 elements opens up the possibility of testing parity-violating interactions of muons with nuclei via

direct radiative capture of muons into atomic 2S orbitals. Since atomic capture preserves longitudinal

muon polarization, the measurements of the gamma ray angular asymmetry in the single photon

2S1=2–1S1=2 transition will offer a direct test of parity. We calculate the probability of atomic radiative

capture taking into account the finite size of the nucleus to show that this process can dominate over the

usual muonic atom cascade and that the as-yet unobserved single photon 2S1=2–1S1=2 transition in muonic

atoms can be detected in this way using current muon facilities.
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Introduction.—The standard model (SM) of particles and
fields has shown tremendous vitality under an onslaught of
new tera-electron-volt-scale data from the Large Hadron
Collider (LHC). Stringent limits are derived on new hypo-
thetical vector particles Z0 that mediate interactions between
light quarks and charged leptons. For a sequential SM Z-like
Z0 particle, such limits extend to 2 TeV, rendering low-
energy parity-violating tests not competitive with the LHC
in the search for new heavy resonances with large couplings
to SM particles. However, an alternative possibility—light
and very weakly coupled particles—may easily escape the
high-energy constraints while inducing some nontrivial
effects at low energy [1]. In recent years the interest in
this type of physics has intensified, largely due to the
accumulation of various anomalous observations that such
light particles may help to explain. (For a possible connec-
tion between light vectors and dark matter physics see, e.g.,
Ref. [2].) In parallel with this, attempts to detect such new
states at ‘‘intensity frontier’’ facilities are becoming more
frequent and more systematic [3].

Muon physics and its study with new high-intensity
muon beams is a natural point of interest because of the
lingering discrepancy between calculations and measure-
ments of the muon anomalous magnetic moment [4] as
well as the recent striking discrepancy of the proton charge
radius extracted from the muonic hydrogen Lamb shift [5]
as compared with other determinations of the same quan-
tity [6]. While it is far from clear that these discrepancies
are not caused by some poorly understood SM physics or
experimental mistakes, it is still important to investigate
models of new physics (NP) that could create such devia-
tions. Models with light vector particles (see, e.g., Ref. [7])
are particularly interesting as they can remove the g� 2
discrepancy quite naturally [8] or be responsible for extra
muon-proton interactions that can be interpreted as a shift
of the proton charge radius [9,10].

As was argued in Ref. [10], a lepton flavor-specific
muon-proton interaction in combination with constraints
in the neutrino sector may imply that right-handed muon
number is gauged, leading to new parity-violating muon-
proton neutral current interactions. We take this model as a
representative example of new physics at the sub-GeV
energy scale that can create stronger-than-weak effects in
the interaction of muons with nuclei. In this Letter, we
revisit the idea of searching for parity violation in the muon
sector using muonic atoms, keeping in mind that no direct
tests of the axial vector muon coupling have been per-
formed at low energy and that the NP contribution could
dominate over the SM [10]. To be specific, we consider
a low-energy effective neutral current Lagrangian that
includes the sum of the SM and NP contributions,

L� ¼ LSM þLNP;

L SM ¼ � GF

2
ffiffiffi
2

p �����5�ðgn �n��nþ gp �p��pÞ; (1)

L NP ¼ �����5�
4��gNP�

m2
V þh

ðgNPn �n��nþ gNPp �p��pÞ; (2)

where the SM vector couplings to nucleons are given by
gVn ¼ � 1

2 , g
V
p ¼ 1

2 � 2sin2�W . In the model with gauged

right-handed muon number, the least constrained points in
the parameter space correspond to the mass of the mediator
gauge boson of mV ’ 30 MeV. In that case, the fit to the
proton charge radius suggests [10]

4��gNP� gNPp

m2
V

’ 2� 10�5

ð30 MeVÞ2 � GF; (3)

which should be considered as perhaps the most optimistic
value for the strength of the muon-proton interaction. In
what follows we suggest a new way to search for the
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manifestation of Eqs. (1) and (2) in muonic atoms using the
process of atomic radiative capture (ARC) to the 2S state:
�� þ Z ! ð��ZÞ2S þ �. We show that probing LNP of
maximal strength is possible with existing muon line fa-
cilities, while the SM values can eventually be tested at the
next generation of high-intensity muon sources.

It is well-known that the suppressed M1 single photon
2S1=2–1S1=2 transition in combination with the small

energy difference between the 2S and 2P states enhances
the parity-violating asymmetry in M1–E1 interference.
This idea has received a significant amount of theoretical
and experimental attention, summarized in a review [11].
The most promising scheme for the detection of parity
violation to date was identified as a slow muon forming a
highly excited atomic state with a nucleus followed by a
cascade ending with

. . . ! 2S1=2 ���!M1�E1
1S1=2 þ �; ð��Þ1S ! e��� ��e; (4)

with parity violation being encoded in the correlation
between the directions of the outgoing � and the muon
decay electron. In Fig. 1 we show a level diagram for a
typical muonic atom.

Despite considerable efforts, the single photon 2S–1S
transition itself has never been detected in any muonic
atoms. In light atoms, Z & 10, this transition cannot be
distinguished from the far more dominant 2P–1S, as the
difference between gamma ray energies in this case is
much smaller than the energy resolution of � detectors.
Combining this with the tiny branching ratio of the
one-photon decay of the 2S1=2 state in light elements and

the fact that it gets scarcely populated, Oð1%Þ, during the
cascade makes the measurement of parity violation very
challenging in light muonic atoms, even though the value
of parity-violating asymmetries could be as large as a few
percent [11]. Heavier muonic atoms, Z� 30, have been
suggested as promising candidates to test parity [12]
because the 2S–1S and 2P–1S transitions can be easily
resolved, as the energy difference between the 2S and 2P
states reaches

�E � E2S � E2P ¼ ðZ�Þ4m�ðm�RcÞ2
12

’ 210 keV� ðZ=36Þ4 � ðRc=4:2 fmÞ2; (5)

where we have normalized the nuclear charge Z and the
nuclear charge radius Rc on the values for krypton and
suppressed total J indices, effectively neglecting the split-
ting between 2P3=2 and 2P1=2 states. Unfortunately, as in

the case of lighter elements, the 2S–1S transition was never
detected in heavier atoms, because of the dominance of the
background created by quanta from nP–1S transitions,
n � 3, whose energies have been degraded [11]. To elabo-
rate on this, one can estimate the signal-to-background
ratio of the single photon 2S–1S transition during the
atomic cascade. The signal S� N2SBr1� is proportional

to the fraction of cascade muons N2S that end up in the 2S
state, where N2S is typically on the order of 10

�2 [13], and
the branching of M1 single photon transition from 2S
states, which for Z� 30 [12] is given by

Br 1� ’ �2S�1Sþ1�

�2S�2P þ �2S�1Sþ2� þ �Auger

’ �2S�1Sþ1�

�2S�2P

� 2� 10�3: (6)

For smaller Z, Z < 28, the single photon branching is
strongly suppressed by Auger processes [14] and by the
two photon transitions. The cascade-related background
consists of the number of energy-degraded nP–1S (n�3)
photons (i.e., those that do not deposit their full energy in
the detector) that fall into the energy resolution interval�E
centered at the energy of the 2S–1S transition. From ex-
perimental studies [15], one can conclude that Oð20%Þ of
muons undergoing a cascade generate nP–1S transitions.
For realistic � detectors, the number of energy-degraded
photons is �50%, and the number of photons under the
2S–1S peak within the energy resolution window of �E�
2 keV can be estimated as B� 0:2� �E=ð2E�Þ � 10�4

for E� � 2 MeV. Therefore, one arrives at the following

estimate of signal-to-background:

�
S

B

�
cascade

� 0:2: (7)

The actual ratio is smaller than this upper bound because of
additional photon backgrounds caused by other sources,
which explains why the 2S–1S transition has not been
detected [11].
In addition to these challenges in detecting the 2S–1S

transition in muon cascades, another difficulty in imple-
menting the scheme in Eq. (4) lies in the fact that the final
step, muon decay, for these elements is very subdominant
to nuclear muon capture. Because of the combination of
these two factors, parity experiments with Z� 30 elements
were deemed impractical [11].

FIG. 1. Diagram of the atomic levels in typical muonic atoms.
Also shown are some of the single photon transitions between
states. The 2S ! 1S single photon transition is an admixture of a
suppressed M1 transition and an E1 transition from 2S–2P
mixing induced by parity violation.
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New proposal for a parity-violation measurement.—Our
proposal is to abandon (4) and use thin targets of Z � 30
elements that only decrease the �� momentum but do not
stop the particle completely. This removes most of the
background related to the muonic cascade. A fraction of
the muons undergo ARC directly into the 2S state. The
signal consists of two � quanta, one from the ARC process
(�1) and the other from the single photon decay of the 2S
state (�2),

��! þ Z ! ð��!ZÞ2S1=2 þ �1; 2S1=2 ���!M1�E1
1S1=2 þ �2:

(8)

Here, ��! denotes the longitudinally polarized muon.
While for the relevant range of Z the energy of �2 is on
the order of 2 MeV, the energy of �1 is dependent on the
muon momentum and for muon momentum of 50 MeV is
in the 10 MeV range. The parity-violating signature is the
forward-backward asymmetry of �2 relative to the direc-
tion of the muon spin.

To calculate the cross section for muonic ARC into the 2S
state [the first step in Eq. (8)], we note that the analogous
process involving an electron, electron-nucleus photorecom-
bination, in the dipole approximation with a pointlike
nucleus is a standard textbook calculation [16,17], as it
can be obtained from the standard hydrogen-like photoelec-

tric ionization cross section �ð0Þ
PE. Here we adjust this for the

muon case, which besides the substitution me ! m�, in-

volves accounting for the finite nuclear charge radius and
the departure from the dipole approximation. This can be
done by introducing a correction factor to the standard
formula,

�ARC ¼ 2!2

p2
�PE; �PE ¼ �ðp;Rc; Z; n; lÞ ��ð0Þ

PEðnlÞ;

�ð0Þ
PEð2SÞ ¼

214�2�a2E4
2

3!4

�
1þ 3E2

!

� expf� 4
pa cot

�1 1
2pag

1� expð�2�=paÞ :

In these expressions, p is the momentum of the incoming
muon, a is the Bohr radius, a ¼ ðZ�m�Þ�1, E2 ¼
Z2�2m�=8 is the (uncorrected) binding energy of the 2S

muon, and ! ¼ p2=2m� þ E2 is the (uncorrected) energy

of the photon emitted in the ARC process. The correction
factor � is calculated by numerically solving the
Schrödinger equation for a muon moving in the field of
the nucleus with uniform charge distribution with charge
radius Rc. The results for the cross sections are plotted in
Fig. 2 for Z ¼ 36 and Rc ¼ 4:2 fm. As one can see, the
corrections to the simple formula are significant, and mostly
come from the finite charge of the nucleus, suppressing a
naive cross section by more than a factor of �3 for p� >

60 MeV. Moreover, at p�m�, this formula will need to be

further corrected by relativistic effects that thus far have
been ignored in our treatment.

Previously, the ARC process was considered theoreti-
cally in Ref. [18] for the case of muonic hydrogen, and
searched for experimentally in Ref. [15] in muonic cas-
cades in Mg and Al. The ARC process was not detected
because in the case of stopped muons the cross section for
forming muonic atoms via electron ejection is several
orders of magnitude larger than �ARC. Because of that,
one should not expect that the muon cascade experiments
can be sensitive to the ARC processes.
Below, we estimate the probability for the ARC process

in a thin gaseous target of Kr that decreases the momentum
of the muon beam from pmax¼30MeV to pmin¼25MeV,

PARC;2S ¼
Z pmax

pmin

dp
nKr�ARC;2S

jdp=dxj � 2� 10�7; (9)

where the momentum loss, dp=dx, is given by standard
Bethe-Bloch theory. For a target size of �5 cm, the num-
ber density of the krypton atoms would correspond to
pressure of pKr � 8 atm.
Combining the probability of the ARC process (9) with

the branching ratio of the M1 photons (6), we arrive at the
emission rate of 2S–1S photons as a function of the
incoming muon flux,

dN2S�1S

dt
¼ PARC � Br1� ���� � 1

250 s
� ���

107s�1
:

(10)

FIG. 2. �ARC;2S as a function of the incoming muon momen-
tum, p (solid curve) for a muon scattering on krypton, Z ¼ 36,
with a uniform nuclear charge density and charge radius of
Rc ¼ 4:2 fm while taking the departure from the dipole approxi-
mation into account. Also shown is the cross section in the dipole
approximation with a pointlike nucleus (dashed curve). ARC
into the 2S state is a factor several times less probable than that
into the 1S state.
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The lifetime of the 2S state is extremely small: for Z > 30
it does not exceed 10 fs [12], which allows for a tight
timing correlation between �1 and �2 in Eq. (8).

We can also estimate the intrinsic background created by
the nP–1S transitions in this case. For a transparent target,
one source of background consists of the bremsstrahlung
process �þ Z ! �þ Zþ � that degrades the muon en-
ergy enough to trap it inside the target, with a subsequent
muon cascade creating nP–1S photons. To calculate the
yield of nP–1S photons, we estimate the probability for the
process �þ Z ! �þ Zþ � by taking the standard cross
section [17] and modifying it by the correction coming
from the finite nuclear charge. In this way we find, for the
same parameters of the target,

Pcascade � P�þZ!�þZþ� � 20� PARC;2S; (11)

requiring that the bremsstrahlung photon be at least as
energetic as that coming from ARC into the 2S state for
pmin ¼ 25 MeV. Only a small fraction of the cascade
photons, �Oð10�4Þ, will be degraded to mimic the
2S–1S transition, and we can conclude that the ratio of
signal to irreducible background is

�
S

B

�
ARC

¼ PARC;2S � Br1�

Pcascade � 10�4
�Oð1Þ; (12)

and the gain over (7) is rather significant. The contribution
to the background due to direct capture on n � 3 orbits is
even smaller. The background from bremsstrahlung and
cascade photons in Eq. (11) is small enough that Ge
detectors with �s response times can operate with muon
fluxes of Oð1010 s�1Þ without photons from these pro-
cesses arriving within the lifetime of the 2S state. We
conclude that while the signal rate is small [Eq. (10)], the
gain in the S=B can be substantial, making the search for
the ARC processes and 2S–1S transitions worth pursuing
experimentally. A further increase in S=B can be achieved
by imposing a cut on the energy of �1 that can distinguish it
from the lower-energy bremsstrahlung �.

We are now ready to investigate the feasibility of the
parity-violation experiment with the use of the ARC
scheme in Eq. (8). The forward-backward asymmetry of
the 2S–1S photon is related to the coefficient of 2S–2P
mixing 	 and the ratio of E1 and M1 amplitudes [12]

AFB ¼ N�2
ð� > �

2Þ � N�2
ð� < �

2Þ
N�2

ð� > �
2Þ þ N�2

ð� < �
2Þ

¼ 2	
ðE1Þ2P�1S

ðM1Þ2S�1S

’ 680�
�
36

Z

�
3 � 	; i	 ¼ h2S1=2jHPVj2P1=2i

�E
;

(13)

where the parity-violating Hamiltonian can be derived
from Eqs. (1) and (2). The size of the parity-violating
admixture in the SM [12] and in the presence of non-
standard interactions [10] is given by

	SM’ 3
ffiffiffi
3

p
GF

8
ffiffiffi
2

p
�Z�R2

c

�
gpþgn

A�Z

Z

�
;

	NP¼
3

ffiffiffi
3

p
gNP�

2Z�R2
cm

2
�

mVa

ðmVaþ1Þ3
�
gNPp þgNPn

A�Z

Z

�
: (14)

For the nonstandard interaction (2), we normalize its
strength to the possible size of the effect suggested by
the muonic hydrogen Lamb shift discrepancy, following
Ref. [10]. This way, for Z ¼ 36 we find

AFB½SM� ’ 0:5� 10�4; AFB½NP� ¼ ð0:5–11Þ%:

(15)

The lower value of the asymmetry AFB½NP� is for small,
�10 MeV, masses of vector mediators, whereas larger
values are for the scaling regime mV � 1=a.
Using these asymmetries and a realistic efficiency factor

of �0:1 for the detection of a two-photon transition, we
arrive at the following estimate of the time required to
achieve the number of events N / 1=AFB

2:

T½SM� � 108 s� 1011 s�1

��

;

T½NP� � 3� 105 s� 107 s�1

��

�
�
0:1

A

�
2
: (16)

One can see that, while the test of a muonic parity-
violating AFB down to the Oð10�4Þ value of the SM
via the method suggested in this Letter is statistically
possible only with future high-intensity muon beams,
tests of some NP models [10] are feasible even at existing
facilities.
In conclusion, let us summarize the main advantages of

possible tests of parity using the atomic radiative capture
scheme in Eq. (8): (i) The muon capture onto the 2S orbit
proceeds via an E1 transition and does not depolarize the
muons. Therefore, it is possible to capture a fully polarized
muon onto the 2S orbit and study an angular asymmetry of
the outgoing � without the need to observe muon beta
decay in the 1S state. (ii) The gain in S=B is significant,
as the nP–1S (n > 3) transitions of cascade muons that
prevented the detection of the single photon 2S–1S decay
in the past are greatly reduced. The detection of this
transition can be realistically performed even with the
existing sources of ��. (iii) The use of a transparent target
allows one to study parity with muons in a ‘‘parasitic’’
setup, when the dominant part of the muon flux is used for
other experiments. It also appears that the ARC-based
method (8) can withstand the increase of the muon beam
intensity more easily than the cascade-based methods (4).
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