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In recent years extensive theoretical and experimental studies of universal few-body physics have

advanced our understanding of universal Efimov physics. Whereas theory had been the driving force

behind our understanding of Efimov physics for decades, recent experiments have contributed an

unexpected discovery. Specifically, measurements have found that the so-called three-body parameter

determining several properties of the system is universal, even though fundamental assumptions in the

theory of the Efimov effect suggest that it should be a variable property that depends on the precise details

of the short-range two- and three-body interactions. The present Letter resolves this apparent contra-

diction by elucidating previously unanticipated implications of the two-body interactions. Our study

shows that the three-body parameter universality emerges because a universal effective barrier in the

three-body potentials prevents the three particles from simultaneously getting close together. Our results

also show limitations on this universality, as it is more likely to occur for neutral atoms but less likely to

extend to light nuclei.
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In the early 1970s, Vitaly Efimov predicted a strikingly
counterintuitive quantum phenomenon [1], today known as
the Efimov effect: in three-body systems for which the two-
body s-wave scattering length a is much larger than the
characteristic range r0 of the two-body interaction, an
infinite number of three-body bound states can be formed
even when the short-range two-body interactions are too
weak to bind a two-body state (a < 0). The Efimov effect,
once considered a mysterious and esoteric effect, is today a
reality that many experiments in ultracold quantum gases
have successfully observed and continue to explore [2–14].

One of the most fundamental assumptions underlying
our theoretical understanding of this peculiar effect is that
the weakly bound three-body energy spectrum, and other
low-energy three-body scattering observables, should de-
pend on a three-body parameter that encapsulates all de-
tails of the interactions at short distances [15]. So, while
these details are critical in determining the deeply bound
three-body spectrum often of interest to spectroscopists,
they only enter ultracold properties through this single
parameter [15]. Because of its connection to these short-
range details, the three-body parameter has been viewed as
nonuniversal since its value for any specific system was
expected to depend on the precise details of the underlying
two- and three-body interactions [16–18].

In nuclear physics, this picture seems to be consistent;
i.e., properties of three-body weakly bound states are sen-
sitive to the nature of the two- and three-body short-range
interactions [17]. More recently, however, Berninger et al.
[3] have experimentally explored this issue for alkali atoms
whose scattering lengths aremagnetically tuned near differ-
ent Fano-Feshbach resonances [19]. Even though the short-
range physics can be expected to vary fromone resonance to

another, Efimov resonances were found for values of the
magnetic field at which a ¼ a�3b ¼ �9:1ð2ÞrvdW, where
rvdW is the van der Waals length [20,21]. Therefore, in
each of these cases, the three-body parameter was approxi-
mately the same, thus challenging a fundamental assump-
tion of the universal theory. Evenmore striking has been the
observation that the Efimov resonance positions obtained
for 39K [4], 7Li [5–7], 6Li [8–11], and 85Rb [12] were also
measured to be consistent with values of a�3b=rvdW found for
133Cs [3]. (Note that thework in Ref. [7] also provided early
suggestive evidence of such universal behavior.) These
observations provide strong evidence that the three-body
parameter has universal character for spherically symmetric
neutral atoms, and therefore suggest that something else
beyond the universal theory needs to be understood.
This Letter precisely identifies the physics beyond the

universal theory that explains the universality of the three-
body parameter, and presents theoretical evidence to support
the recent experimental observations. Previous work has
shown that the three-body parameter can be universal—that
is, independent of the details of the interactions—in three-
polar-molecule systems [22] and in three-atom systems near
narrow Fano-Feshbach resonances [23,24], although recent
work has shown that the latter case likely requires evenmore
finely-tuned conditions [25]. Our present numerical analysis,
however, adds another, broader class of systems with a
universal three-body parameter: systems with two-body in-
teractions that efficiently suppress the probability to find any
pair of particles separated by less than r0. This class of
systems, therefore, is more closely related to systems near
broad Fano-Feshbach resonances [19].
Such a suppression could derive from the usual classical

suppression of the probability for two particles to exist
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between r and rþ dr in regions of high local velocity
@kLðrÞ, which is proportional to [mdr=@kLðrÞ] (m being
the particle mass), the time spent classically in that interval
dr (see Ref. [26]). It is possible that there could be an
additional suppression as well, through quantum reflection
from a potential cliff [27]. Systems supporting many bound
states, such as the neutral atoms used in ultracold experi-
ments with their strong van der Waals attraction, clearly
exhibit this suppression. In general, a finite-range two-
body potential that supports many bound states decreases
steeply with decreasing interparticle distance r, starting
when r=rvdW & 1, at which point the potential cliff plays
a role analogous to a repulsive potential for low-energy
scattering. We demonstrate this fact by showing that the
three-body parameter in the presence of many two-body
bound states roughly coincides with that for a 100% re-
flective two-body model potential, where the two-body
short-range potential well is replaced by a hard sphere.

The starting point for our investigation of the universal-
ity of the three-body parameter is the adiabatic hyper-
spherical representation [18,28]. This representation
offers a simple and conceptually clear description by re-
ducing the problem to the solution of the ‘‘hyperradial’’
Schrödinger equation:

�
� @

2

2�

d2

dR2
þW�ðRÞ

�
F�ðRÞþ

X
�0��

W��0 ðRÞF�0 ðRÞ¼EF�ðRÞ:

(1)

Here, the hyperradius R describes the overall size of the

system; � is the channel index; � ¼ m=
ffiffiffi
3

p
is the three-

body reduced mass for particle masses m; E is the total
energy; and F� is the hyperradial wave function. The
nonadiabatic couplings W��0 drive inelastic transitions,
and the effective hyperradial potentials W� support bound
and resonant states. To treat problems with deep two-body
interactions—necessary to see strong inside-the-well sup-
pression—requires us to solve Eq. (1) for two-body model
interactions that support many bound states, a challenge for
most theoretical approaches. Using our recently developed
methodology [29], however, we have treated systems with
up to 100 two-body rovibrational bound states and have
solved Eq. (1) beyond the adiabatic approximation. Here,
the universality of the three-body parameter is analyzed for
a number of model potentials, one of then being the usual
Lennard-Jones potential:

va
�ðrÞ ¼ �C6

r6
ð1� �6=r6Þ; (2)

where � is adjusted to give the desired value of a and
number of bound states. The other short-ranged potential
models used here, namely, vsch, v

b
� and v

hs
vdW, can be found

in Ref. [26].
Figure 1(a) shows the adiabatic potentialsU� at jaj ¼ 1

obtained using the potential va
� above supporting 25 dimer

bound states. At first glance, it is difficult to identify any
universal properties of these potentials. Efimov physics,
however, occurs at a very small energy scale near the

FIG. 1 (color online). (a) Full energy landscape for the three-body potentials at a ¼ 1 for our va
� model potential. (b) Effective

diabatic potentials W� relevant for Efimov physics for va
� with an increasingly large number of bound states (��

n is the value of � that

produces a ¼ 1 and n s-wave bound states). The W� converge to a universal potential displaying the repulsive barrier at R � 2rvdW
that prevents particles’ access to short distances. (c)–(e) demonstrate the suppression of the wave function inside the potential well
through the channel functions ��ðR; �;’Þ for R fixed near the minima of the Efimov potentials in (b). (c) shows the mapping of the
geometrical configurations onto the hyperangles � and ’. (d) and (e) show the channel functions, where the ‘‘distance’’ from the origin
determines j��j1=2, for two distinct cases: in (d) when there is a substantial probability to find two particles inside the potential well
(defined by the region containing the gray disks) and in (e) with a reduced probability—see also our discussion in Fig. 2. In (d) and (e),
we used the potentials vsch and va

�, respectively, both with n ¼ 3.
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three-body breakup threshold. Indeed, a closer analysis of
the energy range jEj< @

2=mr2vdW [Fig. 1(b)] reveals the

universal properties of the key potential curve controlling
Efimov physics.

Figure 1(b) shows one of our most important pieces of
theoretical evidence for the three-body parameter univer-
sality: the effective adiabatic potentials W� obtained using
va
� for more and more two-body bound states converge to a

single universal curve. [In some cases in Fig. 1(b) we have
manually diabatized W� near sharp avoided crossings in
order to improve the visualization.] As one would expect,
the usual Efimov behavior for the effective potentials,
W� ¼ �@

2ðs20 þ 1=4Þ=2�R2 with s0 � 1:00624, is recov-
ered for R> 10rvdW. It is remarkable, however, that theW�

also converge to a universal potential curve for R< 10rvdW
and, more importantly, these effective potentials display a
repulsive wall or barrier at R � 2rvdW. This barrier pre-
vents the close collisions that would probe the small R
nonuniversal three-body physics, including three-body
forces known to be important in chemistry, thus producing
the three-body parameter universality as we confirm below.
This is in fact our most striking result: a sharp cliff or
attraction in the two-body interactions produces a strongly
repulsive universal barrier in the effective three-body in-
teraction potential.

Qualitatively, this universality derives from the reduced
probability to find particles inside the attractive two-body
potential well. This effect is clear from the channel func-
tions �� [18,28], in Figs. 1(c)–1(e) and the hyperangular
probability densities in Fig. 2. In the adiabatic hyperspher-
ical representation, the space forbidden to the particles fills
an increasingly larger portion of the hyperangular volume
as R decreases. This evolution can be visualized as the
dashed lines in Figs. 2(a)–2(d) expanding outward. In the
process, the channel function �� is squeezed into an
increasingly small volume, driving its kinetic energy
higher and producing the repulsive barrier in the universal
Efimov potential. Moreover, this suppression implies that
the details of the interaction should be largely unimportant.
Consequently, different two-body model potentials should
give similar three-body potentials. Figure 3(a) demon-
strates this universality by comparing W� obtained from
different potential models supporting many bound states.
Perhaps more importantly, it compares them with the
results obtained from the two-body model vhs

vdW that re-

places the deep well by a hard wall, essentially eliminating
the probability of observing any pair of atoms at short
distances. Quantitatively, however, the fact that the barrier
occurs only at R � 2rvdW indicates that universality might
not be as robust as in the cases discussed in Refs. [22–25].
It is thus important to quantify the value of the three-body
parameter to assess the size of nonuniversal effects.

In principle, the three-body parameter could be defined
in terms of any observable related to the Efimov physics
[15]. Two of its possible definitions are [15] the value of

1=a ¼ 1=a�3b < 0 at which the first Efimov resonance ap-

pears in three-body recombination (see for instance

Ref. [30]); and �� ¼ ðmjE0
3bj=@2Þ1=2, where E0

3b is the

energy of the lowest Efimov state at jaj ! 1. Our numeri-
cal results for �� and a�3b are shown in Figs. 4(a) and 4(b),

respectively, demonstrating their universality in the limit of
many bound states. In fact, the values for �� and a�3b in this
limit differ by no more than 15% from the vhs

vdW results—

�� ¼ 0:226ð2Þ=rvdW and a�3b ¼ �9:73ð3ÞrvdW [solid black

line in Figs. 4(a) and 4(b)]—indicating, once again, that the
universality of the three-body parameter is dependent upon
the suppression of the probability density within the two-
body potential wells. Given this picture, we attribute the
nonmonotonic behavior of �� and a�3b in Fig. 4 to the small

but finite probability to reach short distances, which brings
in nonuniversal effects related to the details of two- and
three-body forces, including occasional interactions with
an isolated perturbing channel. Nevertheless, our results
for a�3b are consistent with the experimentally measured

values for 133Cs [2,3], 39K [4], 7Li [5–7], 6Li [8–11,31],
and 85Rb [12], all of which lie within about 15% of the

FIG. 2 (color online). Density plot of the three-body probabil-
ity density j��ðR; �;’Þj2 sin2� which determines the three
particle configuration [see Fig. 1(c)] in the �� ’ hyperangular
plane for a fixed R ( sin2� is the volume element). (a)–(d) show
the results for an R near the minima of the Efimov potentials in
Fig. 1(b) for the first four scattering length poles of the va

� model

as indicated. (a) shows that there is a negligible probability to
find the particles at distances smaller than rvdW (outer dashed
circle) and, of course, inside the 1=r12 repulsive barrier (inner
solid circle). For higher poles, i.e., as the strength of the hard-
core part of the va

� potential decreases, the potential becomes

deeper and penetration into the region r < rvdW is now classi-
cally allowed. Nevertheless, (b)–(e) show that inside-the-well
suppression still efficiently suppresses the probability to find
particle pairs at distances r < rvdW, found to be in the range
2%–4%.
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vhs
vdW result. The average of the experimental values differs

from the present vhs
vdW result by less than 3%.

Previous treatments have failed to predict the universal-
ity of the three-body parameter for various reasons. In
treatments using zero-range interactions, for instance, the

three-body parameter enters as a free parameter to cure the
Thomas collapse [32], preventing any statement about its
universality. Finite range models devoid of a van der Waals
tail, like those used in some of our own treatments [18]
[corresponding to the results for vsch with n ¼ 2 and 3 in
Figs. 4(a) and 4(b)], have failed for lack of substantial
suppression of the probability density in the two-body
wells. Such models, however, are more appropriate to
describe light nuclei having few bound states and shallow
attraction. In contrast to Ref. [18], other models [24,33–38]
have found better agreement with experiments. Our analy-
sis of these treatments, however, indicates that the two-
body models used have many of the characteristics of our
vhs
vdW, therefore satisfying the prerequisite for a universal

three-body parameter. A recent attempt [39] to explain this
universality used an ad hoc hyperradial potential that bore
little resemblance to ours [see Fig. 3(b)]. This ad hoc three-
body potential displayed strong attraction at short distances
in contrast to our key finding, which to reiterate, is that a
cliff of attraction for two bodies produces a universal
repulsive barrier in the three-body system.
In summary, our theoretical examination shows that the

three-body parameter controlling much of universal
Efimov physics can also be a universal parameter under
certain circumstances which should be realized in most
ultracold neutral atom experiments. Provided the under-
lying two-body short-range interaction supports a large
number of bound states, or it has some other property
leading to the suppression of the wave function at short
distances, three-body properties associated with Efimov
physics can be expected to be universal. This surprising
new scenario could not have been, and was not, anticipated
from the simple model calculations to date. Ironically,
increasing the complexity of the model simplified the
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FIG. 3 (color online). (a) Efimov potential obtained from the
different two-body potential models used here. The reasonably
good agreement between the results obtained using models
supporting many bound states (vsch, va

� and vb
�) and vhs

vdW

[obtained by replacing the deep potential well with a hard wall
but having only one (zero-energy) bound state] supports our
conclusion that the inside-the-well suppression of the wave
function is the main physical mechanism behind the universality
of the three-body effective potentials. The differences between
these potentials are seen to cause differences of a few percent in
the three-body parameter. (b) Comparison between the effective
potential proposed by Ref. [39] (green dashed curve) and the
one (red solid curve) constructed to describe our findings:
2�r2vdWWu

� ðRÞ=@2��ðs20þ1=4Þ=X2�b3=X
3�b4=X

4�b5=X
5þ

b16=X
16, where X ¼ R=rvdW and b3 ¼ 2:334, b4 ¼ 1:348, b5 ¼

44:52, b16 ¼ 4:0� 104.
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FIG. 4 (color online). Values for the three-body parameter (a) �� and (b) a�3b as functions of the number n of two-body s-wave bound
states for each of the potential models studied here. (c) Experimental values for a�3b for 133Cs [3] (red: �, þ, h, and *), 39K [4]

(magenta: 4), 7Li [5] (blue: �) and [6,7] (green: j and �), 6Li [8,9] (cyan: m and 5) and [10,11] (brown: . and r), and 85Rb [12]
(black: r). The gray region specifies a band where there is a �15% deviation from the vhs

vdW results. The inset of (a) shows the

suppression parameter �in
p (Eq. (S.5) in Ref. [26]) which can be roughly understood as the degree of sensitivity to nonuniversal

corrections. Since �in
p is always finite—even in the large n limit—nonuniversal effects associated with the details of the short-range

interactions can still play an important role. One example is the large deviation in �� found for the vsch (n ¼ 6) model, caused by a
weakly bound g-wave state. For n > 10 we expect �� and a�3b to lie within the range of �15% established for n � 10.
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outcome by effectively eliminating the impact of the
deeply bound two- and three-body states on the low-energy
bound and scattering three-body observables. That is, the
three-body parameter becomes largely universal.
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