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It is shown that at sufficiently largeNc for incident momenta which are much larger than the QCD scale,

the total nucleon-nucleon cross section is independent of incident momentum and given by �total ¼
2�log2ðNcÞ=ðm2

�Þ. This result is valid in the extreme large Nc regime of logðNcÞ � 1 and has corrections

of relative order logð logðNcÞÞ= logðNcÞ. A possible connection of this result to the Froissart-Martin bound

is discussed.
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The large Nc limit of QCD and the 1=Nc expansion have
been of great interest since introduced by ‘t Hooft nearly
40 years ago [1]. While the approach to date has not
provided a path by which quantities can be calculated
ab initio directly from QCD, except in special cases such
as QCD in 1þ 1 dimensions [2] or QCD in the limit of
heavy quark masses [3,4], it has provided a qualitative
understanding of many aspects of hadronic phenomena.
Witten’s extension of the analysis to include baryons has
played a critical role [3]. One of the remarkable features of
baryons is the emergence of a contract SUð2NfÞ symmetry

at large Nc [5] which has allowed predictions of both
ground-state baryons [5] and excited baryonic resonance
[6]. In this Letter, we will focus on the nonstrange sector
and assume exact isospin invariance.

Implications of large Nc QCD for nuclear physics were
first explored inWitten’s seminal paper on largeNc baryons
[3]. A key result of this analysis is that the nucleon-nucleon
interaction has a strength which scales as N1

c and a range
which scales as N0

c . Moreover, nucleon-nucleon scattering
with fixed-incident momentum has no smooth large Nc

limit. However, a sensible time-dependent, mean-field de-
scription emerges if the initial velocity is held fixed at large
Nc (that is, that momentum scales linearly with Nc given
that the mass is linear in Nc). While there has been signifi-
cant work on various aspects of nuclear physics at largeNc,
such as treatments of the nucleon-nucleon (NN) potential
[7], the phenomenological relevance of the large Nc limit
for nuclear physics is far less clear than for hadronic physics
[8]. Despite this, it is of interest to understand theNc scaling
behavior of quantities of interest in nuclear physics. One
quantity that has received comparatively little attention
except for a recent paper on its spin flavor dependence [9]
is the total nucleon-nucleon cross section (with the effects
of electromagnetic interactions removed). This is unfortu-
nate since, as will be shown in this Letter, the total cross
section is truly remarkable in that it can be computed
analytically when Nc is sufficiently large:

�total ¼ 2�log2ðNcÞ
m2

�

: (1)

Equation (1) holds for all spin-isopsin channels in the
regime where the incident momentum is much larger than
�QCD; corrections to Eq. (1) are of relative order

logð logðNcÞÞ= logðNcÞ. Formally Nc needs to be extremely
large for Eq. (1) to hold, and it is not obvious that the result is
phenomenologically relevant for the physical world of
Nc ¼ 3. In any event, the result is of real interest from the
perspective of theory.
To gain insight, it is useful to first consider a simplified

‘‘toy problem’’ of scattering of two nonrelativistic spinless
particles of mass M interacting via a central potential that
falls off exponentially at large distances. The problem has a
control parameter, �, which controls the scaling of the
potential strength (but not its range), the mass, and the
initial relative momentum:

M ¼ � ~M VðrÞ ¼ � ~VðrÞ k ¼ �~k; (2)

where the quantities with a tilde are independent of �. The
classical trajectory followed by a particle in this problem
depends on the impact parameter b and ~p, ~VðrÞ, and ~M but
not on �: if the quantum scattering is described well
classically, then the differential cross section will be inde-
pendent of �. The parameter, �, however, controls the
region of validity of a semiclassical description in an
underlying quantum-scattering problem; the classical limit
corresponds to large �. Of course, by design this problem
mirrors the Nc scaling rules of NN scattering with � play-
ing the role of Nc.
The potential is central, and the partial waves are

independent. Using the scaling rules in Eq. (2) and the
Schrödinger equation for a given partial wave, the phase
shifts can be shown to scale as

�lðkÞ ¼ ��~lð�~kÞ ¼ �~�~lð~kÞ; (3)

where ~l ¼ l=� is introduced for convenience and ~� is
independent of �. Corrections are of relative order 1=�.
To see this, parameterize the radial wave function for a
given partial wave as the product of a phase and an ampli-

tude, c lðrÞ ¼ ei�lðrÞjc lðrÞj, and take l to be proportional to
�. It is easy to show self-consistently that at large �, � is
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proportional to � while jc lðrÞj is slowly varying and
independent of �. This is precisely what one expects if �
acts as the control parameter for the semiclassical limit.
The total cross section for central potentials is given by

�total
toy ðkÞ ¼ 4�

k2
X

l

ð2lþ 1Þsin2ð�lðkÞÞ

� 4�
~k2

Z
d~l2~lsin2ð� ~�~lð~kÞÞ; (4)

where �l is the phase shift for the lth partial wave and the
integral expression becomes exact as � ! 1.

In the integral of Eq. (4), focus on the range from
~l1 to ~l2. For large �, sin2 oscillates rapidly and averages
to 1

2 (up to corrections of order 1=�) over this region; the

contribution to the cross section becomes

��total
toy ðkÞ ¼ 2�ðb22 � b21Þ with b � l

k
¼

~l
~k
: (5)

This is twice the geometric cross section associated with
impact parameters from b1 and b2; the factor of 2 is due to
a nearly forward diffractive scattering contribution equal to
the geometrical contribution [10]. At infinite �, there is no

bound on the ~ls that contribute implying that the total cross
section diverges as � ! 1.

The quantum cross section is finite because the phase
shifts approach zero as l ! 1. For any finite value of �,

there is a regime of sufficiently large l such that ~�� ��1

and the sin2 term does not oscillate rapidly to yield an
average of 1

2 . The phase shift in this regime rapidly be-

comes small and makes small contributions to the total

cross section. The value of ~l beyond which the rapid
oscillations effectively turns off depends on � and gets
pushed off to infinity as � ! 1.

To see this, start with the integral form of Eq. (4) and

change variables into an integral over ~�. It is a simple
matter to show that

�total
toy ¼2�b2cutþ2�~k�2

Z �cut=�

0
d~�

�
d~l2

d~�

�
sin2ð�~�ÞþOð��1Þ;

(6)

where d~l2

d~�
is treated as a function of ~� in the integral and �cut

is an arbitrary but fixed ‘‘cutoff’’ phase shift of order �0;
bcut is the impact parameter associated with �cut. The
arbitrariness in the choice of �cut is compensated by the
integral in Eq. (6). If the integral in Eq. (6) is parametri-
cally smaller than 2�b2cut when �cut is of order �

0, then up
to parametrically small corrections �total

toy ¼ 2�b2cut.

As shall be shown self-consistently, the total cross sec-
tion is dominated by the behavior for large impact parame-

ters, or equivalently, large ~l. In this regime, each partial
wave is semiclassical and the potential is much smaller
than the centrifugal barrier. Thus, the phase shifts are well
approximated [11] by

~� ¼ �
Z 1
~l=~k

~� ~VðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~k2 � ~l2=r2

q dr; (7)

where ~� is the reduced mass divided by �.
For concreteness, take the form of the potential to be the

sum of Yukawa interactions: ~VðrÞ ¼ P
n
~Cn

expð�r=rnÞ
r where

the ~Cn are strength parameters independent of � and the rn
are the ranges. Note that at large �, bcut is large and the
integral in Eq. (7) is dominated by the longest-range con-
tribution to the potential. Evaluating the integral yields

~� ~l ¼ �
~C ~M
~k

K0ð~l=ð~kr0ÞÞ ¼ �
~C0 ~�
~k

K0ðb~l=r0Þ; (8)

where r0 is the longest range in the potential and ~C0 is the
associated strength. For large values of b~l=r0, it is legiti-
mate to use the asymptotic form of the Bessel function
when inverting this relation; doing this yields

b~l ¼
r0
2
W

� ~C2 ~�2�
~�2
~l
~k2

�
; (9)

where W is the Lambert function. As x gets very large
WðxÞ ! logðxÞ (reflecting the dominantly exponential
behavior of K0) with corrections of relative order

logð logðxÞÞ= logðxÞ. At large ~l, the phase shifts become

small; the log is dominated by ~�~l; bl � �r0 logð~�lÞ
and bcut ¼ �r0 logð�cut=�Þ. Thus, up to corrections of
order �0,

bcut ¼ r0 logð�Þ (10)

and at large � is �total
toy ¼ 2�r20log

2ð�Þ provided the integral
in Eq. (6) is parametrically small—which, as will be shown
shortly, it is.
Note that the sensitivity to the particle’s mass and to the

strength of the potential are contained in the order �0

correction terms to Eq. (10). Note, further, that the sensi-
tivity to the choice of �cut is also contained in the �0

correction terms. Since the dependence of the choice of
�cut is compensated by the integral in Eq. (6), it follows
that the integral is also parametrically of order �0 and
makes a negligible contribution to the cross section at large
�. Thus, �total

toy ¼ 2�r20log
2ð�Þ with corrections of relative

order logð logðxÞÞ= logðxÞ. With the substitutions r0 !
1=m� and � ! Nc, this is of the form of Eq. (1). It should
be apparent that any power law prefactor to the Yukawa
potentials cannot alter this result at leading order.
The result also holds for a relativistic version of the toy

problem. Consider potential scattering in a relativistic two-
body model (which lacks micro causality but can be con-
sistently formulated as a quantum theory [12]). The basic
setup remains intact: the partial wave decomposition still
holds and Eqs. (4) and (6) remain valid. In the semiclassi-

cal regime with sufficiently large ~l, one can always cast the
phase shift into the form of Eq. (7) with ~VðrÞ replaced by
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(an energy dependent) ~VeffðrÞ whose form depends on the
transformation properties of the interaction. If the longest-
range interaction in the model transforms as a Lorentz
scalar (as in QCD), then at long range ~VeffðrÞ ¼
~VsðrÞ ~E= ~�. Relativity affects bcut only by renormalizing
the strength of the longest-range interaction by an energy-
dependent amount independent of �. Since the leading
behavior of the total cross section does not depend on the
strength, the relativistic toy model also has �total

rel:toy ¼
2�r20log

2ð�Þ which corresponds to Eq. (1).

Nucleon-nucleon scattering in large Nc QCD is clearly
more complicated than in the toy problem for several
reasons: (i) The nucleons have spin, and the partial wave
expansion for elastic scattering is necessarily of a coupled
channel form; (ii) there is an emergent spin-isospin sym-
metry at largeNc [5]; as a result of this symmetry the� and
a whole tower of baryons are stable and nearly degenerate
with the nucleon at large Nc. The emergent symmetry
implies correlations between channels in scattering
[7,9,13]; (iii) There are inelastic channels due to meson
production. However, as discussed below, the result in
Eq. (1) is quite robust and is unaltered by these
complications.

To treat the full problem, the generically strong (order
Nc) nature of the NN interaction must be encoded in a
model-independent way. The potential model treatments of
the toy problem are inappropriate to this problem and, in
any event, the potential is intrinsically unphysical which
can lead to subtleties in the Nc counting [14]. The physi-
cally relevant object is the S matrix for nucleon-nucleon
scattering, SNN. Its elements for elastic scattering can be
denoted SNNl;a:l0;a0 where a (a0) specifies the spin and isospin

configuration of the incident (final) states of the two nu-
cleons. Conservation of angular momentum and isospin
along with the fermion nature of nucleons constrain the
form of SNN; for example, the matrix elements are zero
unless l0 ¼ l� 1, l, lþ 1.

The strong NN interaction at largeNc cannot be encoded
by having SNN scale linearly in Nc; it is bounded due to
unitarity. To proceed, note that in the toy problem, Eq. (3),
the phase shift, i.e., the logarithm of the S matrix in the
partial wave channel, scales with Nc. This behavior is
expected to hold generically for diagonal matrix elements
of the S matrix in large Nc QCD.

logðSNNl;a;laÞ � 2i�l;a ¼ 2i�R
l;a � 2�I

l;a � Nc (11)

where the Smatrix is for nucleon-nucleon elastic scattering
at fixed initial velocity. Note that �l;a is not real in general;

the imaginary part reflects scattering out of the original
channel either to other elastic channels (with different final
l or a) or to inelastic channels. Both the real and imaginary
parts are expected to scale with Nc. This applies to all
physical channels (e.g., two neutrons with spins aligned
with the beam).

There are several ways to understand the origin of the
scaling in Eq. (11); the simplest is via an optical potential
for relativistic nucleon-nucleon scattering; its imaginary
part encodes loss of flux into channels with particle
creation. Using Witten’s counting rules, one sees that the
generic counting for both the real and the imaginary parts
of the optical potential both scale with Nc. Semiclassical
analysis analogous to the derivation of Eq. (7), then,
straightforwardly yields Eq. (11). A more complete deri-
vation of Eq. (11) will be discussed in a forthcoming
publication.
The total cross section in multichannel problems with

the initial nucleons in spin-isospin configuration a can be
expressed in terms of the diagonal matrix elements of the S
matrix:

�total
a ðkÞ¼2�

k2
X

l

ð2lþ1Þf1�exp½�2�I
l;aðkÞ�cos½2�R

l;aðkÞ�g

�4�
~k2

Z
d~l2f1�exp½�2Nc�

I
~l;a
ðNc

~kÞ�
�cos½2Nc�

R
~l;a
ðNc

~kÞ�g; (12)

where k ¼ Nc
~k; the first form is general [11] and the

second form builds in the Nc scaling of the phase shifts.
The integral form becomes exact in the limit Nc ! 1.
Note that Eq. (12) coincides with Eq. (4) of the toy

problem if one sets �I
l;a to zero. Moreover, Eq. (5) contin-

ues to hold, providing the integrand is in the regime where

either the real or imaginary parts of ~� (or both) are of order
unity; in the case of the real part, it is due to rapid
oscillations as in the toy problem; in the case of the
imaginary part, it holds due to an exponential suppression.
As in the toy problem, the total cross section is determined

by where ~� ceases to be of order unity and becomes of
order 1=Nc. It is easy to see that if, as a function of l, �I

l;a

approaches zero at least as rapidly as �R
l;a, then the total

cross section at leading order will be determined by where
~�R
~l;a

drops to order of 1=Nc.

It is clear that �I
l;a does approach zero more rapidly than

�R
l;a: consider going to sufficiently large ~l so that the phase

shifts are accurately described by the Born approximation
for the longest range part of the interaction—one-pion
exchange. In that regime, the �R

l;a is small but nonvanish-

ing, while �I
l;a vanishes at the first Born approximation

level only arising at second order. Moreover, it is clear that
at very large l, the real part of the phase shift is dominated
by the Born approximation contribution to one-pion ex-
change which drops off exponentially in exactly the same
way that it does in the toy model. Accordingly, the result in
the toy model carries across, and Eq. (1) follows exactly as
in the toy model. Note that this exponential falloff holds for
any physical spin and isospin configuration of the initial
baryons; pion exchange dominates regardless of the initial
spin orientations or whether the two nucleons are the same
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or different. Thus Eq. (1) also holds for any initial con-
figuration, and the leading order cross section is spin and
isospin independent. This is consistent with the analysis of
Ref. [9], although it is more restrictive than the most
general leading-order result deduced there.

It is worth observing that at large Nc, elastic scattering
should account for half of the total scattering or more. In
the regime of l, where �I

l;a � Nc, the contribution to the

scattering looks like a black disk for which diffractive
scattering is 50%. There may, in principle, also be sub-
stantial contributions for the regime where �I

l;a is small but

�R
l;a � Nc; such contributions will have elastic contribu-

tions of greater than 50%.
The log2 form of the cross section in Eq. (1) is strikingly

similar to the Froissart-Martin bound [15]. At large
Mandelstam s, considerations of unitarity, analyticity,
plus the knowledge that the pion is the lightest excitation
in the system serve to bound the growth of the total cross
section at large s

�total � �

m2
�

log2
�
s

s0

�
; (13)

where s0 is a reference scale. This similarity may not be
accidental. Note that the natural regime for nucleon-
nucleon scattering at large Nc is for fixed velocity [3],
which in turn implies that s� N2

c . Provided that s0 does

not also scale with Nc, the bound becomes �total �
�
m2

�
log2ðNc~s

s0
Þ, where ~s is independent of Nc. If one takes

the large Nc limit prior to the large s limit, and keeps only
the leading behavior, one has �total � 4�

m2
�
log2ðNcÞ up to

corrections of relative order 1= logðNcÞ. Note that Eq. (1)
satisfies this inequality by exactly a factor of 1

2 . This factor

of 1
2 is suggestive. The derivation of the Froissart-Martin

bound requires unitarity. However, if one looks at the
integral form of Eq. (12) it is clear that in the region of
dominant contribution, the integrand at large Nc is pre-
cisely 1

2 of its unitarity bound (which occurs at �R ¼ �=2,

�I ¼ 0). Thus, the present result is natural in light of the
Froissart-Martin bound.

To what extent is this result applicable to the physical
world of Nc ¼ 3? In the physical world, the total cross
section for

ffiffiffi
s

p
well above �QCD is approximately inde-

pendent of s [16] as would be expected from the large Nc

analysis. Over three orders of magnitude in
ffiffiffi
s

p
, from

1:5 GeV<
ffiffiffi
s

p
< 1200 GeV, the cross section for proton-

proton scattering varies by only about 25%. Moreover, the
cross section is dominantly spin and isospin independent
[9,17] as predicted to occur at large Nc. These results may
suggest that the large Nc analysis is of phenomenological
relevance for the physical world of Nc ¼ 3. However, this
is not clear. For example, above 1.5 GeV, the total cross
section is predominantly inelastic; the elastic cross section
is typically less than 1

4 of the total cross section and by
ffiffiffi
s

p
of several 10 s of GeV, it drops to under 20%. While it has

been argued that at truly asymptotically high energies [18]
it approaches 1

2 , at large Nc this behavior is expected for all

s well above �jrmQCD. This implies that a substantial part

of the cross section comes from regions where both the real
and imaginary parts of the phase shift are small. This is at
odds with the behavior expected at large Nc, where, as
noted above, elastic scattering should be 50% or higher.
Given this, it is perhaps not too surprising that the absolute
prediction of Eq. (1) that �total � 150 mb is significantly
larger than the empirical value of approximately 40 mb.
Ultimately, the reason that the large Nc analysis for
the magnitude of the total cross sections is not very pre-
dictive for the Nc ¼ 3 world is quite understandable.
Formally, one expects the analysis to be predictive
only when logðNcÞ � 1. Clearly this is not true for
Nc ¼ 3. Whatever the phenomenological significance for
the world of Nc ¼ 3, the fact that at large Nc the total cross
section is calculable is, at the very least, of theoretical
interest.
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