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This Letter reports on the first computation, from data obtained in lattice QCD with u, d, s, and c quarks

in the sea, of the running strong coupling via the ghost-gluon coupling renormalized in the momentum-

subtraction Taylor scheme. We provide readers with estimates of �MSðm2
�Þ and �MSðm2

ZÞ in very good

agreement with experimental results. Including a dynamical c quark makes the needed running of �MS

safer.
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Introduction.—The confrontation of QCD, the theory for
the strong interactions, with experiments requires a few
inputs: one mass parameter for each quark species and an
energy scale surviving in the limit of massless quarks,
�QCD. This energy scale is typically used as the boundary

condition to integrate the renormalization group equation
for the strong coupling constant, �S. The value of the
renormalized strong coupling at any scale, or equivalently
�QCD, has to be fitted to allow the QCD phenomenology to

account successfully for experiments. A description of
many precision measurements of �S from different pro-
cesses and at different energy scales can be found in
Ref. [1]. The running QCD coupling can be alternatively
obtained from lattice computations, where the lattice spac-
ing replaces �QCD as a dimensionful parameter to be

adjusted from experimental inputs. This means that a
lattice-regularized QCD can be a tool to convert the physi-
cal observation used for the lattice-spacing calibration, as
for instance a mass or a decay constant, into �QCD. A

review of most of the procedures recently implemented
to determine the strong coupling from the lattice can be
found in Ref. [2]. We also quoted in Ref. [3] many of the
different methods proposed in the last few years.

The present ‘‘world average’’ for the strong coupling
determinations [4], usually referred at the Z0 mass scale, is
dominated by the lattice determination included in the
average [5], as discussed in Ref. [1]. Because of the
importance of a precise and proper knowledge of the strong
coupling for the LHC cross section studies and its explo-
ration of new physics, independent alternative lattice de-
terminations are strongly required. The latter is especially
true when different lattice actions and procedures are
applied, to gain thus the best possible control on any source

of systematic uncertainty. Furthermore, the current lattice
results have been obtained by means of simulations includ-
ing only two degenerate up and down sea quarks (Nf ¼ 2)

or, as in Ref. [5], also including one more ‘‘tuned’’ to the
strange quark (Nf ¼ 2þ 1). Now, the European Twisted

Mass (ETM) Collaboration has started a wide-ranging
program of lattice QCD calculation with two light degen-
erate twisted-mass flavors [6,7] and a heavy doublet for the
strange and charm dynamical quarks (Nf ¼ 2þ 1þ 1)

[8,9]. Within this ETM program, we have applied the
method to study the running of the strong coupling, and
so evaluate�QCD, grounded on the lattice determination of

the ghost-gluon coupling in the so-called momentum-
subtraction Taylor renormalization scheme [10,11]. We
are publishing the results of this study in two papers: a
methodological one [3], where the procedure is described
in detail along with some results, and this short Letter
aimed to update and emphasize the phenomenologically
relevant results. In particular, as far as the lattice gauge
fields with 2þ 1þ 1 dynamical flavors that we are ex-
ploiting provide us with a very realistic simulation of QCD
at the energy scales for the � physics, we are presenting
here the estimate for the coupling at the � mass scale and
directly comparing with the one obtained from � decays. It
should be noted that including the dynamical charm quark
also makes the running up to the Z0 mass scale safer.
The strong coupling in the Taylor scheme.—The starting

point for the analysis of this Letter shall be the Landau-
gauge running strong coupling renormalized in the
momentum-subtraction-like Taylor scheme,

�Tð�2Þ�g2Tð�2Þ
4�

¼ lim
�!1

g20ð�2Þ
4�

Gð�2;�2ÞF2ð�2;�2Þ; (1)
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obtained from lattice QCD simulations. F and G stand for
the form factors of the two-point ghost and gluon Green
functions (dressing functions). The procedure to compute
the coupling defined by (1), and from it to perform an
estimate of �MS, is described in detail in Refs. [10,11]. We

recently applied this in Ref. [3] to compute �MS from

Nf ¼ 2þ 1þ 1 gauge configurations for several bare cou-

plings (�), light twisted masses (a�l), and volumes. The
prescriptions applied for the appropriate elimination of
discretization artifacts, such as the so-called
Hð4Þ-extrapolation procedure [12], were also carefully
explained in Ref. [3]. After this, we are left with the lattice
estimates of the Taylor coupling, computed over a large
range of momenta, that can be described above around
4 GeV by the following operator product expansion
(OPE) formula [11]:

�Tð�2Þ ¼ �
pert
T ð�2Þ

�
1þ 9

�2
Rð�pert

T ð�2Þ; �pert
T ðq20ÞÞ

�
�
�
pert
T ð�2Þ

�pert
T ðq20Þ

�
1��A2

0 =�0 g
2
Tðq20ÞhA2iR;q20
4ðN2

C � 1Þ
�
; (2)

where 1� �A2

0 =�0 ¼ 27=100 for Nf ¼ 4 [13,14].

Rð�;�0Þ for q0 ¼ 10 GeV {see Eq. (6) of [3]} is obtained
as explained in the appendix of Ref. [11]. The purely
perturbative running in Eq. (2) is given up to four loops
by integration of the � function [4], where its coefficients
are taken to be defined in the Taylor scheme [10,15]. Thus,

�pert
T depends only on lnð�2=�2

TÞ. This, however, allows us
to fit both g2hA2i and�T , the�QCD parameter in the Taylor

scheme, through the comparison of the prediction given by
Eq. (2) and the lattice estimate of the Taylor coupling. The
best fit of Eq. (2) to the lattice data published in Ref. [3]
provided the estimates that can be read in Table I. In this
Letter, we complete the previous analysis by including an
ad hoc correction to account for higher power corrections
(see Fig. 1) that allows us to extend the fitting window
down to p ’ 1:7 GeV and also apply the so-called plateau
method to determine the best fit [10]. Furthermore, in
addition to the lattice ensembles of gauge configurations
described in Ref. [3], we study 60 more at � ¼ 2:1 (a�l ¼
0:002) and three new ensembles of 50 configurations at
� ¼ 1:9 and a�l ¼ 0:003, 0.004, 0.005 to perform a chiral

extrapolation for the ratios of lattice spacings. We get
að2:1; 0:002Þ=að1:9; 0Þ ¼ 0:685ð21Þ. The lattice scale at
� ¼ 1:9, 1.95, 2.1 is fixed by the ETM Collaboration
through chiral fits to lattice pseudoscalar masses and decay
constants, where 270 & mPS & 510 MeV, that are re-
quired to take the experimental f� and m� at the physical
point [8,9]: e.g., að1:9; 0Þ ¼ 0:086 12ð42Þ fm.
The Wilson OPE coefficient and the higher power cor-

rections.—The OPE prediction for �T given by Eq. (2) is
dominated by the first correction introduced by the non-
vanishing dimension-two Landau-gauge gluon condensate
[16–21], where the Wilson coefficient is applied at the
Oð�4Þ order. In the previous methodological paper [3],
we provided readers with a strong indication that the
OPE analysis is indeed in order: it was clearly shown
that the lattice data could be only explained by including
nonperturbative contributions and that the Wilson coeffi-
cient for the Landau-gauge gluon condensate was needed
to describe the behavior of data above p ’ 4 GeV and up
to p ’ 7 GeV (see Fig. 2).
Now, in Fig. 1, the impact of higher power corrections is

sketched: the plot shows the departure of the lattice data for
the Taylor coupling from the prediction given by Eq. (2),
plotted in terms of the momentum, with logarithmic scales
for both axes. The data seem to indicate that the next-to-
leading nonperturbative correction is highly dominated by
a 1=p6 term. This might suggest that the 1=p4 OPE con-
tributions are negligible when compared with the 1=p6

ones or that the product of the leading 1=p4 terms and
the involved Wilson coefficients leaves with an effective
1=p6 behavior. Anyhow, this implies that we can effec-
tively describe the Taylor coupling lattice data for all
momenta above p ’ 1:7 GeV with

TABLE I. The parameters for the best fit of Eq. (2) (see
Ref. [3]) to lattice data (first row) and the same with Eq. (3)
(second row). The conversion to the MS scheme for �QCD is

done by applying Eq. (4). The renormalization point for the
gluon condensate is fixed at � ¼ 10 GeV. We quote statistical
errors obtained by applying the jackknife method.

�
Nf¼4

MS
(MeV) g2hA2i (GeV2) ð�dÞ1=6 (GeV)

Eq. (2) [3] 316(13) 4.5(4)

Eq. (3) 324(17) 3.8(1.0) 1.72(3)

1 10
p (GeV)

0.01

0.1

1

αN
P
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 α
O
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l
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β=1.95, aµ
l
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β=2.10, aµ
l
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1  / p
6
-correction

1 / p
4
 -behavior

FIG. 1 (color online). The departure of lattice data from the
leading nonperturbative (NP) OPE prediction for the running
coupling plotted in logarithmic scales, in terms of the momen-
tum, manifestly shows a next-to-leading 1=p6 behavior; the
vertical dashed red line stands for the momentum scale, p ’
1:7 GeV, below which the lattice data do not follow the 1=p6

behavior any longer.

PRL 108, 262002 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending
29 JUNE 2012

262002-2



�d
Tðp2Þ ¼ �Tðp2Þ þ d

p6
; (3)

where d is a free parameter to be fitted which we do not
attribute to any particular physical meaning. Other possible
ad hoc fitting formulas might be also applied and this can
be thought to induce a systematic error on the determina-
tion of �MS in the next section. However, the comparison

of perturbative and nonperturbative estimates will show
this error not to be larger than around 20 MeV.

The strong coupling in the MS scheme.—To obtain the

MS �QCD from �T is rather immediate, as the scale-

independent �QCD parameters in both the Taylor and MS
schemes are related through [11]

�MS

�T

¼ exp

�
� 507� 40Nf

792� 48Nf

�
¼ 0:560 832: (4)

Then, one can numerically invert Eqs. (2) and (3) and apply
Eq. (4) to determine �MS from all the lattice estimates of

the Taylor coupling at any available momenta. �MS from

different momenta must only differ by statistical fluctua-
tions, provided that Eqs. (2) and (3) properly describe lattice
data at those momenta. Thus, the parameters g2hA2i and d
are to be fixed such that a constant fits with the minimum
�2=d:o:f: to the �MS results obtained by the inversion of

Eqs. (2) and (3). This is the plateaumethod applied in Fig. 2,
which is equivalent to fitting Eqs. (2) and (3) directly to the
Taylor coupling lattice data, as is done in Fig. 3. The best-fit
parameters can be found in Table I. The best plateau with
Eq. (3) is obtained for�MS ¼ 0:324ð17Þ GeV over a fitting

window ranging from p ¼ 1:7 GeV up to p ¼ 6:8 GeV,

where �2=d:o:f: ¼ 146:9=516, while �2=d:o:f: ¼
106:7=329 over 4:1< p< 6:8 GeV for �MS ¼ 0:316ð13Þ
with Eq. (2). For the sake of comparison, we also estimate
�MS by inverting Eq. (2) with g

2hA2i ¼ 0. A plateau is then

possible for a narrow window only including the highest
momenta, as for 5:5<p< 6:8 GeV, where we obtain
�MS ¼ 0:351ð11Þ GeV with �2=d:o:f: ¼ 107:2=154.
Indeed, these last estimates clearly show a systematic non-
flat behavior that can be pretty well explained as described
in the caption.

The MS running coupling can be obtained again by the
integration of the � function, with the coefficients now in

the MS scheme for Nf ¼ 4. Thus, we can apply the two

estimates of �MS, that can be found in Table I, to run the

coupling down to the scale of � mass, below the bottom
quark mass threshold, and compare the result with the
estimate from � decays [1], �MSðm2

�Þ ¼ 0:334ð14Þ. This
will produce, with the 1-� error propagation, the two
following results at the � mass scale: �MSðm2

�Þ ¼
0:337ð8Þ and �MSðm2

�Þ ¼ 0:342ð10Þ. If we combine both

estimates and conservatively add the errors in quadrature,
we will be left with

�MSðm2
�Þ ¼ 0:339ð13Þ; (5)

in very good agreement with the one from � decays. This
can be graphically seen in the plot of Fig. 4.
The determination of �MS at the Z0 mass scale implies

first to run up to the MS running mass for the bottom quark,
mb, with � coefficients and �MS estimated for 4 quark

flavors, and to apply next the matching formula [4]:

�
Nf¼5

MS
ðmbÞ ¼ �

Nf¼4

MS
ðmbÞ

�
1þX

n

cn0

�
�
Nf¼4

MS
ðmbÞ

�
n
�
; (6)
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FIG. 3 (color online). Eq. (2) [light gray (red) dashed line] and
Eq. (3) [light gray (red) solid line] for the parameters in Table I
fitted to the lattice data for �T defined by (1). The black line is
for Eq. (2) with g2hA2i ¼ 0.
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FIG. 2 (color online). �MS obtained by applying the plateau
method to the lattice data labeled in the plot. The light gray (red)
solid or dashed lines correspond to the plateaus for�MS obtained

with Eq. (3) or (2). The black solid line is for Eq. (2) with
g2hA2i ¼ 0, while the black dashed line corresponds to evaluate
first Eq. (3) with the best-fit parameters in Table I and take then
the resulting �T to obtain �MS by inverting Eq. (2) with

g2hA2i ¼ 0.

PRL 108, 262002 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending
29 JUNE 2012

262002-3



where the coefficients cn0 can be found in Ref. [22], and
then to run from the bottom mass up to the Z0 mass scale.
Thus, from our two estimates of �MS, we obtain

�MSðm2
ZÞ ¼ 0:1198ð9Þ and �MSðm2

ZÞ¼0:1203ð11Þ. Again,
combining these two results and their errors added in
quadrature, we will be left with

�MSðm2
ZÞ ¼ 0:1200ð14Þ; (7)

lying in the same ballpark of lattice results from the PACS-
CS Collaboration [23], �MSðm2

ZÞ ¼ 0:1205ð8Þð5Þ, esti-

mated with 2þ 1Wilson improved fermions but relatively
large pion masses (� 500 MeV), and from the HPQCD
Collaboration [5], �MSðm2

ZÞ ¼ 0:1183ð8Þ, with 2þ 1 stag-

gered fermions. This last is consistently estimated from
two different methods and 5 different lattice spacings and
is included in the 2010 world average [4]: �MSðm2

ZÞ ¼
0:1184ð7Þ {also in the very preliminary 2011 update [1]:
�MSðm2

ZÞ ¼ 0:1183ð10Þg. Our estimate also agrees well

with this world average, but still better with �MSðm2
ZÞ ¼

0:1197ð12Þ, the average obtained without the lattice
HPQCD Collaboration result and without that from deep
inelastic scattering nonsinglet structure functions [24],
�MSðm2

ZÞ ¼ 0:1142ð23Þ, which is more than 2 �’s away

from most of the other involved estimates. However, if the
HPQCD Collaboration lattice result, only including u, d,
and s quarks, is replaced by the present one, also including
the c quark, the world average would still be consistent:
�MSðm2

ZÞ ¼ 0:1191ð8Þ.
It should be noted that we applied two different fitting

strategies, taking different fitting windows and studying the
impact of higher order OPE corrections, and no systematic
effects have been observed. Our error analysis is based
on the jackknife method when we account for the fitted

parameters, while the statistical uncertainties on the lattice
sizes are properly propagated into the final estimates. Some
other systematic effects (not included in our error budget),
such as those related to the use of the twisted-mass action
for the dynamical quarks or to the lattice size determina-
tion at the chiral limit, could also appear but can be only
excluded by the comparison with other lattice and experi-
mental estimates.
Conclusions.—We have presented the results for a first

computation of the running strong coupling from lattice
QCD simulations including u, d, s, and c dynamical fla-
vors. We applied the procedure of determining the ghost-
gluon coupling renormalized in the Taylor scheme over a
large momenta window and then compared this with the
perturbative running improved via nonperturbative OPE
corrections. That procedure has been previously shown to
work rather well when analyzing lattice simulations with
Nf ¼ 0 and 2 dynamical flavors and so happens here for

Nf ¼ 2þ 1þ 1. Our estimate for the running strong cou-

pling at the � mass scale nicely agrees with those from �
decays and, after being properly propagated up to the Z0

mass scale, is pretty consistent with most of the estimates
applied to obtain the current Particle Data Group (PDG)
world average, although it is slightly larger than the Nf ¼
2þ 1 lattice result also used for this average.
We appreciate the support of Spanish MICINN

FPA2011-23781 and ‘‘Junta de Andalucia’’
P07FQM02962 research projects and the IN2P3 (CNRS-
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