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We propose a model for inflation consisting of an axionic scalar field coupled to a set of three non-

Abelian gauge fields. Our model’s novel requirement is that the gauge fields begin inflation with a

rotationally invariant vacuum expectation value (VEV) that is preserved through identification of SU(2)

gauge invariance with rotations in three dimensions. The gauge VEV interacts with the background value

of the axion, leading to an attractor solution that exhibits slow roll inflation even when the axion decay

constant has a natural value (<MPl). Assuming a sinusoidal potential for the axion, we find that inflation

continues until the axionic potential vanishes. The speed at which the axion moves along its potential is

modulated by its interactions with the gauge VEV, rather than being determined by the slope of its bare

potential. For sub-Planckian axion decay constants vanishingly small tensor to scalar ratios are predicted,

a direct consequence of the Lyth bound. The parameter that controls the interaction strength between the

axion and the gauge fields requires a technically natural tuning of Oð100Þ.
DOI: 10.1103/PhysRevLett.108.261302 PACS numbers: 98.80.Cq

The success of the inflationary paradigm is manifest.
Observations, preeminently of the cosmic microwave
background radiation, have confirmed that our Universe
is approximately spatially flat and have provided compel-
ling evidence that structure formation was initiated with
nearly scale invariant curvature fluctuations over the entire
range of observable scales. The data suggest that these
fluctuations are Gaussian and are red tilted, in perfect
concord with the simplest models of inflation.

Despite these successes, many physicists believe that the
simplest models of inflation are, on their own, inadequate.
This is because many successful models rely on scalar
fields whose potentials are tuned to extraordinary flatness
to achieve sufficient inflation. This tuning is not generi-
cally protected from quantum corrections. Many models of
inflation now exist that utilize a variety of methods to
alleviate this difficulty. Among these methods, a particu-
larly natural possibility is protection by a shift symmetry,
as we find in axions. Natural inflation was the first model to
make use of an axionic shift symmetry in this context [1].
While natural inflation is observationally viable, matching
observations requires a large axion decay constant,
f�MPl [2]. Such a large decay constant appears to be
difficult to realize in string theory [3]. The discovery of
viable axionic inflationary models that do not need super-
Planckian decay constants (e.g., [4–6]) has led to a renais-
sance of interest in axionic inflation.

In this Letter, we propose a new method for inflating
with an axion that has a sub-Planckian decay constant. Our
model’s new ingredient is a collection of non-Abelian
gauge fields with a vacuum expectation value (VEV).
Since every SUðNÞ group has an SU(2) subgroup, SUðNÞ
gauge fields can always be given a VEV that is rotationally
invariant by identifying the global part of the SU(2)

symmetry with the rotational symmetry of space (for
more details, see [7,8], and references therein) [9]. While
our proposal does not rely on the specific gauge group, we
work with SU(2) gauge fields for concreteness.
This model produces successful inflation in a new way,

achieving slow roll inflation by the efficient transfer of
axionic energy into classical gauge fields, rather than
from dissipation via Hubble friction. This energy exchange
is mediated by the coupling between the axion and the
Chern-Simons term for the non-Abelian gauge field.
Because the Chern-Simons term, by itself, is a total de-
rivative, this coupling respects the axionic shift symmetry.
Hence, any other axion-gauge field interactions will be
absent, while higher-order corrections to the gauge action
will be very small. This means that we can consistently
tune the coefficient of one operator (the axion–Chern-
Simons term) to be large in a technically natural way.
This is in contrast to generic single field models, where
the form of the Lagrangian is not protected by any sym-
metry. In those models, a tower of fine tunings is needed to
enforce cancellations of one-loop effects.
Inflationary dynamics.—To demonstrate our model’s

viability, we look for inflationary solutions of the axion-
gauge system in the regime where the axion decay constant
is small, f � Mpl. We consider the action for an axion

interacting with a set of SU(2) gauge fields,
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where we work in natural units (@ ¼ c ¼ Mpl ¼ 1), Greek

letters denote spacetime indices while Roman letters from
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the start of the alphabet denote gauge indices, and Roman
letters from the middle of the alphabet denote spatial
indices. In this expression, the field X is an axion which
we take to be in a homogeneous configuration,X ¼ XðtÞ.
Note that although we have written the standard cosine
potential for the axion—which arises due to nonperturba-
tive effects from the interaction of the axion with some
other gauge sector—nothing about our mechanism
relies on the potential taking this particular form. As we
mentioned before, we assume an initial gauge field con-
figuration described by a rotationally invariant, classical
VEV [14],

Aa
0 ¼ 0; Aa

i ¼ c ðtÞaðtÞ�a
i : (2)

The related field strength tensor has components,

F0i ¼ @tðc ðtÞaðtÞÞ�a
i ; Fa

ij ¼ �~gfaijðc ðtÞaðtÞÞ2; (3)

where the faij are the structure functions of SU(2), an

overdot denotes a derivative with respect to cosmic time,
and ~g is the gauge coupling. With this field configuration,
the reduced action for these degrees of freedom is
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from which the equation of motion for the axion is

€X þ 3H _X ��4

f
sin

�
X
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�
¼ �3~g
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f
c 2ð _c þHc Þ; (5)

and the equation of motion for the gauge field is

€c þ 3H _c þ ð _H þ 2H2Þc þ 2~g2c 3 ¼ ~g
�

f
c 2 _X: (6)

The gauge field has the equation of state of radiation,
p ¼ �=3, and thus by itself cannot source inflationary
expansion, while the gauge field-axion interaction term
does not contribute to either the energy density or pressure.
The system thus inflates if the energy density is dominated
by axion potential. In the absence of the gauge fields, the
model reduces to natural inflation; in the absence of the
coupling to the axion, the gauge VEV decays within a
Hubble time. The key new ingredient in our scenario is
that, when the gauge field is turned on in the homogeneous
configuration described above, the equation of motion for
the axion—Eq. (5)—gains a new interaction term on the
right-hand side. As we will see, this provides an additional
lever with which we can slow the axion’s evolution,
making it possible for slow roll inflation to occur away
from the hilltop even for sub-Planckian axion decay con-
stants, f <Mpl [15].

We can now look for slowly rolling inflationary solu-

tions of this system of equations assuming €X, €c , and
_H ’ 0 and studying the resulting equations. In this limit,

we can diagonalize the system, finding equations for _c and
_X that depend only on c and X. The equation for c that
results from this procedure reads

_c ¼ �H
c ð2f2H2 þ 2~g2f2c 2 þ ~g2�2c 4Þ

ð3f2H2 þ ~g2�2c 4Þ

þ ~g��4c 2 sinðX=fÞ
3ð3f2H2 þ ~g2�2c 4Þ : (7)

Choosing parameters that make 3f2H2 � ~g2�2c 4 gives

H _c ’ �H2c þ�4 sinðX=fÞ
3~g�

H

c 2
: (8)

This parameter choice amounts to making the combination
�=f to be large, since the inflationary solution requires
~g2c 4 � �4 �H2; see Appendix B of [16] for several
examples of how to achieve a large value of �. Assuming
we are in the overdamped regime, the right-hand side of
Eq. (8) can be interpreted as the slope of an effective
potential for the gauge field,

Veffðc Þ ¼ H2 c
2

2
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c
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This effective potential has a minimum:

c min �
�
�4 sinðX=fÞ

3~g�H

�
1=3

: (10)

When the gauge VEV takes this value (and _c ’ 0) the
right-hand side of Eq. (5) is exactly equal to the gradient of
the bare axion potential. What this means is that the axion’s
motion is dominated by classical energy transfer into the
gauge sector. The axion still rolls, but only very slowly;
since we have diagonalized our system of equations,
the appropriate equation to consider is not Eq. (5), but
the diagonalized one, which we write explicitly below
[Eq. (11)]. The mass of fluctuations about the gauge
VEV’s minimum is large (m2

c ¼ 3H2). Thus, when the

gauge VEV has settled into this minimum we can set
_c ’ 0 and integrate out c during slow roll. This gives us
an effective equation governing the axion’s evolution in
terms of X alone. We emphasize that it is important to
diagonalize the equations before making the replacement
c ¼ c min. Working with e-folding number, dN ¼ Hdt,
rather than time, we find

X0

f
’ 2ffiffiffiffiffi

32
3
p
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~g4=3�8=3sin2=3ðX=fÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~g2�4�4H4 sinðX=fÞ3

p
�
; (11)

where a prime (0) denotes a derivative with respect to N.
We can see from this equation that the axion’s dynamics
are not being dictated by the interplay of the gradient of the
axion’s bare potential and Hubble damping; instead, the
axion is evolving quite slowly on a flat effective potential
generated by interaction of the axion and the gauge VEV.

We note also in passing that X0 / 1=sin1=3ðX=fÞ, which
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diverges mildly asX ! 0. This is indicative of the fact that
the gauge field provides a force on the axion even when
X ¼ 0, implying that inflation cannot continue indefi-
nitely at the hilltop even classically when the gauge VEV
is present. This formula can be inverted to find an expres-
sion for the number of e-foldings over which inflation
proceeds. Assuming inflation begins at X0, inflation will
end at X=f � x ¼ �. Taking H to be dominated by the
axion potential and writing ~� � �=Mpl, the formula for

the number of e-foldings, N, is given by

NðX0Þ ¼
Z �

X0=f

1
2 ½3~g2�4 ~�4ð1þ cosxÞ2 sinx�1=3

½�2 ~�8ð1þ cosxÞ4�1=3 þ ð3~g2 sinxÞ2=3 dx:
(12)

The combination of parameters that maximizes the number
of e-folds of inflation N is given by ~g2=� ’ ~�4=3.
Assuming this relation, a simple expression can be found
for the maximum number of e-foldings

Nmax ’ ð3=5Þ�; (13)

where the numerical prefactor comes from integrating the
combination of sine and cosine functions over x 2 ½0; ��.
Hence we can see that �� 100 is necessary to get Oð60Þ
e-foldings of inflation.

The kinetic energy of the axion is never important in this
model and the kinetic energy of the gauge field is negli-
gible, and so the slow roll parameters are given by

� � �H0

H
’ 3~g2c 4

�4ð1þ cosðX=fÞÞþ c 2;

where we have used that H is dominated by the axion
potential, and
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Equation (14) implies that, during successful slow roll, the
second term must be Oð�2Þ. This happens when we pick
parameters that can achieve enough inflation. Although the
slow roll parameters do not come into our calculations
directly, it is worth noting that we have � / 1=� when
the maximization condition is met. When the gauge VEV
is at its minimum (c 0 ¼ 0), � ¼ Oð�Þ.

Estimating perturbations.—The classical evolution of
the system undergoing slow roll is, to an excellent approxi-
mation, described by the axion rolling slowly along a
dynamically generated effective potential and the gauge
VEV c sitting at its dynamically enforced minimum,
Eq. (10). Moreover, fluctuations of the gauge field

about the minimum have mass mc � ffiffiffi
3

p
H, from which

it appears that they may play only a limited role in the
adiabatic perturbations of the model. With this in mind, we
can get a rough estimate for the amplitude and tilt of the
power spectrum of adiabatic perturbations by assuming
that the curvature perturbation is dominated by quantum

fluctuations of the axion along the classical trajectory
generated by its interactions with the gauge VEV. This
path can be thought of as a kind of dynamically generated
effective potential. The amplitude of the perturbations can
then be estimated by considering the perturbation in the
e-folding number

�N ¼ @NðX0Þ
@X0

�X þ � � � ; (15)

where we have neglected the contributions of fluctuations
of the gauge fields as discussed above. That is, for a simple
estimate we can consider the axion’s evolution along its
effective potential to set the clock for the time evolution of
the system. Hence, to a first approximation the power
spectrum of curvature fluctuations will be given by

�2
RðkÞ � 1

4�2

H2

X02 : (16)

Under the same set of assumptions, the tilt of the scalar
spectrum, ns, is given by

ns � 1� 2�þ 2
X00

X0 : (17)

One can verify that the Cosmic Background Explorer
normalization can be matched along with a red spectral
index with ns � 0:97 at 50 e-folds before inflation
ends with the parameter choices f�;f;~g;�g¼
f3:16�10�4;0:01;2:0�10�6;200g. Let us stress that these
are merely naive estimates of the fluctuations. Nonetheless,
they indicate that the model is potentially viable.
We expect that the spectrum of tensor fluctuations in this

model will be dominated by the usual vacuum fluctuations
of the metric, so we can assume that its amplitude is set by
the inflationary energy scale. While spin-2 excitations of
the gauge field configuration may also contribute to the
gravitational wave spectrum, we anticipate that they will
be subdominant [10,11]. This then implies that, in the
absence of nonadiabatic evolution of the system, super-
Planckian axion decay constants are a necessary condition
in order to yield observable gravitational waves. This is a
simple consequence of the Lyth bound [18]. In this model,
inflation ends very near a particular point on the potential,
namely X=f � �. As the axion decay constant f is
decreased, the distance the field rolls in field space is
correspondingly smaller by the same fraction. This means
the field must roll more slowly in order that sufficient
inflation is generated. The position of the field on the
effective potential measures the time before inflation
ends in this model, as is usual in models of inflation with
a single effective adiabatic degree of freedom, and the
curvature perturbation is the fluctuation of this time due
to the quantum fluctuations in the metric and fields. Since
the field is rolling more slowly, the size of the quantum
fluctuations must also be smaller in order that the ratio
in Eq. (16) satisfies the Cosmic Background Explorer

PRL 108, 261302 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending
29 JUNE 2012

261302-3



normalization. For the parameters chosen above, r� 10�6,
which is far below the range probed by current or planned
future experiments.

Discussion and conclusions.—We have described a new
model for inflation driven by an axion. In our model, the
novel ingredient is a collection of non-Abelian gauge fields
that have an isotropic VEVas their initial state. We identify
the global SU(2) gauge symmetry with rotations in space,
thus protecting the isotropy of the gauge VEV with its
SU(2) gauge symmetry. The gauge VEV, in turn, replaces
Hubble friction as the mechanism by which the axion’s
speed of rolling down its potential is slowed. The equations
that govern the gauge VEV have a dynamical minimum.
When the VEV settles into this minimum, the resulting
effective action for the axion is dominated by classical
gauge field interactions. The slow evolution of the axion
along this classical trajectory is similar to classical evolu-
tion along a flat potential, suggesting that the adiabatic
perturbations of this model will be compatible with
observations. Meanwhile, fluctuations in the gauge VEV,
orthogonal to the adiabatic trajectory, have effective
masses of order the Hubble scale. This suggests that we
can estimate the amplitude and tilt of the scalar fluctuations
by assuming that quantum fluctuations of the position of
the axion on its effective potential (the clock in our model)
dominate the curvature perturbation. Fluctuations off this
trajectory will decay outside the horizon, and are thus
expected to contribute negligibly. Obtaining sufficient in-
flation while matching the observed amplitude and tilt of
the perturbations provides three constraints on combina-
tions of the four parameters of this model leaving one
degree of freedom.

The effective theory we study requires a single, techni-
cally natural tuning: the coupling between the axion and
the gauge fields via the Chern-Simons term must be large.
The shift symmetry of the axion and the restrictions of non-
Abeliean gauge interactions guarantee that we have ne-
glected no important corrections to our effective action. It
is also easy to see that the energy scale of inflation is well
below the cut-off of the effective theory, since the cut-off is
given by f=� 	 H ’ �2. Isocurvature and statistics
beyond the power spectrum—such as the bispectrum—
may provide unique signatures of the mechanism and
further bound the allowed region of parameter space. We
caution, however, that we have made mere estimations of
the perturbations in this theory. In practice, a full analysis
of the six extra degrees of freedom relative to the standard
inflationary scenario is necessary to measure the health of
this theory relative to current data. This is greatly compli-
cated by the addition of the gauge fields, which mix with
the axion at tree level and must satisfy a non-Abelian
version of Gauss’ law. We will provide a complete account
of the perturbations in a future publication [19].
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