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Emerging models of quantum computation driven by multiphoton quantum interference, while not
universal, may offer an exponential advantage over classical computers for certain problems.
Implementing these circuits via geometric phase gates could mitigate requirements for error correction
to achieve fault tolerance while retaining their relative physical simplicity. We report an experiment in
which a geometric phase is embedded in an optical network with no closed loops, enabling quantum
interference between two photons as a function of the phase.
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When a quantum mechanical system evolves under some
Hamiltonian, the probability amplitudes associated with
indistinguishable events can accumulate dynamical and
geometric phases [1] and interfere constructively or destruc-
tively. In Hong Ou Mandel interference [2], when two
photons meet at the input ports of a beam splitter, the event
that both photons are transmitted is indistinguishable from
the event that both photons are reflected, but the associated
probability amplitudes have opposite phases and so interfere
destructively: the probability to detect one photon at each
output port is zero. This quintessentially quantum photonic
interference generates the nonclassical correlations in
multiphoton quantum walks [3,4] and the computational
complexity of many-photon interference in large optical
networks [5-7]. These emerging models of quantum com-
putation are unlikely to be universal but may be exponen-
tially more powerful than classical computers for certain
problems. Crucially, since the basic models do not require
initial entanglement, conditional gates, or feed-forward op-
erations, large scale examples will be substantially less
challenging to physically construct than a universal quantum
computer. Achieving fault tolerance in these schemes with-
out sacrificing their relative physical simplicity to unwieldy
error correction is a key goal.

Geometric phases and, more generally, non-Abelian
holonomies have been proposed as a method to implement
fault-tolerant gates for umniversal quantum computation
[8—111], since they are robust against perturbations to which
the important global geometric properties are invariant
[12-17]. As described by Berry [1], a phase is accrued
by a vector in an instantaneous eigenstate of a Hamiltonian
undergoing cyclic adiabatic evolution. Anticipated in an
earlier classical result [18] and verified experimentally
[19-21], the geometric phase has undergone important
generalizations, including the non-Abelian [22] and non-
adiabatic cases [23], the noncyclic [24-26] and nonunitary
[27] cases, and the case where the endpoints of the evolu-
tion are orthogonal [28-30]. The geometric phase has been
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observed at the single photon level and in the context of
nonlocality [31-33], while a biphoton wave packet in a
superposition of modes in a closed interferometer exhibits
the predicted increase in sensitivity to a geometric phase
[34-36] that is observed for a dynamical phase [37]. To
date, however, all observations of optical geometric phases
involve self-interference of a single photon or classical
light interference.

In light of the computational attributes of quantum
interference between different photons and the desire to
achieve fault tolerance in physically feasible computa-
tional models driven by this effect, demonstrating exquisite
control over photonic quantum interference via an intrinsi-
cally robust geometric phase gate is a key step. Such an
experimental connection in the context of these models is
somewhat analogous to the implementation of a holonomic
two-qubit gate in the established circuit model of universal
quantum computation. Furthermore, to directly observe the
influence of the geometric phase on interference between
photons, any measurement statistics should not be obfus-
cated by other phase-dependent phenomena. In particular,
single-photon interference, which has already been dem-
onstrated to be predictably receptive to the geometric
phase, should ideally be independent from the geometric
phase in such an observation.

Here, we establish an experimental functional relation-
ship connecting a variable geometric phase (VGP) to sinu-
soidal quantum interference between individual photons of
a pair. The VGP is imparted inside a four-mode optical
network that contains no closed loops, such that no single-
photon interference can take place. Applied to only one
photon of the pair in one of the modes, the VGP arises
through a traversal of the polarization sphere comprising a
closed cycle and an open path; the end points of the total
traversal are mutually orthogonal. The other three modes
traverse lengths on the polarization sphere equal to that of
the VGP mode, but these include a partial, or total, path
retracing such that a fixed GP, or no GP, is finally imparted.
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Polarization vectors evolve via parallel transport, ensuring
zero dynamical phase here, while the unknown dynamical
phase contributions from small physical length mis-
matches are fixed. We observe high visibility quantum
interference fringes and find an approximate flat line re-
sponse for one-photon inputs, confirming the absence of
single-photon interference.

Complex Hadamard matrices [38] relate the computa-
tional basis of a discrete Hilbert space to some mutually
unbiased basis [39]. The four-mode complex Hadamard
unitary, H,, transforms quantum states according to

1 1 1 1

H_11
Y2l -1 1 -1
1

so that a single particle prepared in a well-defined position
corresponding to an element of the computational basis,
when acted upon by a device described by H,, emerges
with maximal uncertainty in its position. A large ensemble
of similarly prepared one-particle input states will be found
after the device with approximately one quarter of their
total number at each of the four detectors (in the case of
no losses). Modulation of the phase 6 in the H, device has
no consequence for the maximal uncertainty in position of
the single particle and no consequence for the detection
statistics of the ensemble.

The optical network shown schematically in Fig. 1(a)
consists of four one-half reflectivity beam splitters, a swap
of the two middle modes, a phase shift § on the lowest
mode, and four detectors (D;); it is equivalent to H,
with the labeling of input and output ports indicated. The
network contains no closed-loop interferometers, and a
photon injected into any input port emerges in an equal
superposition of the four output ports, regardless of the
phase setting. Similarly, measurement in the computational
basis of one-photon ensembles cannot reveal any informa-
tion about 6, and these statistics should ideally give a flat-
line response to modulation of this phase.

The situation is dramatically different for two-photon
input states. Simultaneous injection into the complex
Hadamard network of a photon in mode |0) and a photon
in mode |1) leads to a state that experiences photonic
quantum interference, producing correlations between pairs
of detectors as a function of 6. The conditional probabilities
for coincidental detection of photons are summarized in
Eq. (1). Given a detection at D;, the probability Pr(j | i)
for a detection D; is

Pr(i = 1[mod4] | i = {0,2}) = (1 = cos6)/2,
Pr(i +2i=1{0,1}) =0 (1)

Implementing 6 geometrically creates a system in which
quantum correlations from two-photon inputs are a function
of a geometric phase, whereas its effects are unobservable
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FIG. 1 (color online). Complex Hadamard network and VGP.
(a) Schematic of the optical network, with phase shift 6.
(b) Experimental construction based on beam displacers, with
wave plates implementing a geometric phase 6'. (c) Sphere
showing stages of polarization vector travel in the 6’ section.

in statistics from one-photon inputs, which would not be the
case in an interferometer such as the Mach Zehnder.

Devices implementing discrete instances of transforma-
tions similar to H, have been constructed in bulk optics
for a small number of dynamical phase settings [40] and
in multimode waveguides [41] where the phase is perma-
nently fixed at a single value. Here, we encode in position
(rail) and polarization, using a pair of parallelized
Jamin-Lebedeff interferometers in a calcite beam displacer
architecture, as shown in Fig. 1(b), to construct a device
equivalent to H4 up to trivial phases on input and output
ports and relabeling [42]. Expanding to six modes through the
0’ section, we use an arrangement of wave plates to imple-
ment the phase geometrically, allowing continuous transition
between all phase values. The action of the beam splitters in
Fig. 1(a) is equivalently implemented on polarization by half
wave plates (A) with optic axes set to 22.5°; the swap is
facilitated with beam displacers (B) that force horizontally
polarized light to walk off at an angle, while vertically
polarized light continues undeviated; polarization beam split-
ters (S) convert polarization to position for detection.

The 6’ section in Fig. 1(b) comprises quarter wave plates
with optic axes fixed at 45° (Q), or at —45° (Q1), and half
wave plates (P) free to rotate but with optic axes locked
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together at the same angle «. Overall, this implements a
polarization flip on the top rail (¢), the identity on the
middle rail (m) [43], while the bottom rail (b) experiences
a polarization flip and a VGP as a function of «. Figure 1(c)
shows the polarization sphere [44]. Photons in rails t and m
retrace their polarization steps from the halfway point; while
the total path length traversed on the polarization sphere for
light in rail b is equal to that of rails ¢# and m, the crucial
difference in the actual route traversed leads to the experi-
mental VGP, 6'(«).

The polarization vector in rail b, of light traveling the 6’
section of Fig. 1(b), makes a traversal of the sphere of
Fig. 1(c) that includes a closed cycle and an open path. The
full traversal is VRP(a)LHRP(a)LH, with P(«) indicating
a point on the sphere determined by the variable angle of
the half wave plates. The respective SU(2) unitaries for the
polarization vectors of the three rails are

(01 10 [ 0 e
U=i . U, U, =il :
10 01 e"ia

where |H) = |0) and |V) = |1) in each subspace. In this
construction, a 1° change in the synchronized optic axes of
both rotatable half wave plates results in a 4° shift in the
experimental geometric phase: 4Aa = A@'. Light in rails

t and b receive a polarization flip during the full traversal
so that the initial and final polarization vectors of the
respective rails are orthogonal. Interestingly, a geometric
phase is accrued in this situation [28] and can be identified
as the fixed i factor on these unitaries.

To observe the correlations predicted in Eq. (1), pairs
of photons were injected into the network as shown in
Fig. 1(b): a horizontally polarized photon into rail m, and
a vertically polarized photon into rail b, corresponding to
computational states |0) and |1) respectively. The P wave
plates were rotated almost two full revolutions, scanning a
near 8 X 27 range for #'. To confirm the insensitivity of
one-photon statistics to A#’, one photon was injected into
the network, for each of the |0) and |1) inputs, with another
photon sent directly to a detector, as a herald. Photons were
generated in a spontaneous parametric down-conversion
source [45].

Experimental data shown in Fig. 2 strongly support
predictions from Eq. (1). Figure 2(a) displays raw data
for all six coincidence counts, with the expected four
high visibility quantum interference fringes—the differ-
ence in amplitudes is due to different coupling efficiencies.
In contrast, the two signals from detectors Dy-D, on rail ¢
[upper pane in Fig. 2(a)], and D{-D; on rail m [lower pane
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FIG. 2 (color online).

Photonic quantum interference and one-photon response to the change in experimental geometric phase 6'.

(a) Raw data for all six coincidence outputs showing quantum interference as a function of A#@’. (b) The four A¢’ sensitive quantum
signals for a 27 range of the geometric phase, normalized. (c) Raw data for all eight output signals for both individual one-photon

inputs.
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in Fig. 2(a)] show the predicted continuous and near total
destructive quantum interference, with negligible response
to Af'; the greatest phase response of these two signals was
D-D; with a 0.9 = 0.1% amplitude [46].

Coincidence counts for the four A’ quantum response
curves were retaken over the 27 range shown in Fig. 2(b)
and normalized for the measured coupling efficiencies.
Following the notation from Eq. (1), the upper pane in
Fig. 2(b) shows Pr(1 | 0) and Pr(1 | 2) with a respective
minimum and maximum at 7 radians; the lower pane in
Fig. 2(b) shows Pr(3 | 2) and Pr(3 | 0) with a respective
minimum and maximum at 7 radians. The average visi-
bility of these fringes is 94.0 = 0.2% given from the fit
that is shown as a solid black line. The small flat data in
Fig. 2(b) are respective accidental signals, which are
taken into account for the visibility calculation [47]. The
raw data in Figure 2(c) confirm the insensitivity of one-
photon statistics to A@’. The four panes on the left of
Fig. 2(c) show plots taken with a photon input in state |0)
with the top plot showing data for detector D, the next plot
below showing data for D, and so on; similarly the plots
on the right of Fig. 2(c) are taken for input state |1). In each
case the average count is shown as the solid line and the
phase insensitivity is quantified by the relative standard
error (RSE) from this line. The average RSE from all eight
plots is 3%; the plot with the greatest RSE at 6% is from
detector D5 with input state |1).

The polarization operations in the 8’ section of Fig. 1(b)
give zero dynamical phase contributions if the polarization
vectors are parallel transported at all times. The condition
for parallel transport, for a certain state vector | (¢)), is
(g ()| (1)) = 0, which implies that, at an infinitesimal
time step later, the state |i/(¢ + 8¢)) remains in phase
with |¢(#)). This condition is met for individual single-
photon states and for the composite two-photon state
superposed across all three rails of the 6’ section in
Fig. 1(b). The lengths of rails ¢, m, and b are not matched
on the wavelength scale of the photons so that unknown
dynamical phase differences occur between these rails,
which are fixed due to the intrinsic stability of the experi-
mental architecture. Therefore, the only variable phase is
that on rail b and is a function of the common adjustable
angle of the two P half wave plates.

We have observed photonic quantum interference
fringes that are a function of a variable geometric phase.
This direct observation of the Berry phase in the quantum
signal is possible because the optical complex Hadamard
network contains no closed loops, so does not support
single-photon interferometry. All active elements of the
state’s Hilbert space make equal path length traversals on
the polarization sphere, but only those elements of the two-
photon state that traverse via a particular route lead to a
variable geometric phase. This route comprises a full cycle
and an open path on the polarization sphere, with mutually
orthogonal start and end points. We have, therefore, simul-

taneously experimentally tested several important and
distinct aspects of the geometric phase in conjunction
with making the central quantum-interference observation
of the Berry phase.

The experimental network reported here is a small scale
example of a model of quantum computation driven by
photonic quantum interference [4,7], with a holonomic
component. Generalizations of holonomies have previously
been widely investigated for robust gate operation in qubit-
based universal quantum computation, as discussed, and
theoretically examined in the specific case of photonic
qubits [48]. Aside from imperfect unitary operation, the
other major source of error in current linear optical experi-
ments is typically photon loss; however, evidence suggests
that loss in these models can be compensated through the
injection of higher numbers of photons [49]. Furthermore,
holonomies may reduce the exposure of photons to
mode mismatch, leading to less demand on filtering, thus
reducing loss.

Scaling up examples of holonomic multiphoton-inter-
ference-driven computational models in waveguides [50]
where dynamical logic gates have been shown to work with
high fidelity [51] is an appealing prospect. Any unitary
transformation on modes can be implemented with a net-
work of Mach Zehnder interferometers [52] which have
been realized in waveguides with variable thermo-optic
[53] and electro-optic [54] phase shifts and integrated
into a partially reconfigurable on-chip logic gate [55]. An
interesting line of research is to consider the class of
holonomic operations available given a large-scale fully
reconfigurable optical unitary network and the extent to
which the global properties are invariant to imperfect
splitting ratios in directional couplers and small random
fluctuations from voltage-controlled phase shifters, which
act locally.
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