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Anna Pappa,1,2 André Chailloux,3 Stephanie Wehner,4 Eleni Diamanti,1 and Iordanis Kerenidis2,4
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2LIAFA, CNRS—Université Paris 7, Paris 75013, France

3Computer Science Department, University of California, Berkeley, California 94720-1776, USA
4Center for Quantum Technologies, National University of Singapore, Singapore 117543

(Received 6 February 2012; published 26 June 2012; corrected 2 July 2012)

Future quantum information networks will consist of quantum and classical agents, who have the ability

to communicate in a variety of ways with trusted and untrusted parties and securely delegate computa-

tional tasks to untrusted large-scale quantum computing servers. Multipartite quantum entanglement is a

fundamental resource for such a network and, hence, it is imperative to study the possibility of verifying a

multipartite entanglement source in a way that is efficient and provides strong guarantees even in the

presence of multiple dishonest parties. In this Letter, we show how an agent of a quantum network can

perform a distributed verification of a source creating multipartite Greenberger-Horne-Zeilinger (GHZ)

states with minimal resources, which is, nevertheless, resistant against any number of dishonest parties.

Moreover, we provide a tight tradeoff between the level of security and the distance between the state

produced by the source and the ideal GHZ state. Last, by adding the resource of a trusted common random

source, we can further provide security guarantees for all honest parties in the quantum network

simultaneously.

DOI: 10.1103/PhysRevLett.108.260502 PACS numbers: 03.67.Dd, 03.65.Ud, 03.67.Bg, 03.67.Hk

Entanglement plays a key role in the study and develop-
ment of quantum information theory. It has been widely
used in all aspects of quantum information and has been
essential to show the advantages obtained compared to the
classical setting. Initially defined for bipartite states, the
notion of entanglement has been generalized to multipartite
systems, and despite the complexity this notion acquires in
this case, many interesting properties of multipartite en-
tangled states are known. If we consider, for example, the
quantum correlations of the Greenberger-Horne-Zeilinger
(GHZ) state [1] and its n-party generalization, we can find
a nonlocal game that can be won with probability 1 in the
quantum setting, while any classical local theory can win
the game with probability at most 3=4 [2].

Multipartite entangled states are a fundamental resource
when quantum networks are considered. Indeed, they allow
network agents to create strong correlations in order to
perform distributed tasks, to delegate computation to un-
trusted servers [3], or to compute, for example, through the
measurement-based quantum computation model [4]. A
natural and fundamental question that arises then is
whether the network agents should be required to trust
the source that provides them with such multipartite en-
tangled states or whether they are able to verify the
entanglement.

In this Letter, we show that a quantum agent can verify
efficiently, with respect to the necessary resources, that an
untrusted source creates entanglement, even in the pres-
ence of dishonest parties.

The model.—We start our analysis by first describing in
detail our model and its relation to previous work.

Source.—The source is untrusted. It is supposed to create
the n-party GHZ state 1ffiffiffiffi

2n
p ðj0ni þ j1niÞ and distribute it to n

parties. By applying a Hadamard and a phase shift (
ffiffiffiffi
Z

p
)

gate to each qubit, the GHZ state can be expressed by the
locally equivalent state

j�n
0i ¼

1ffiffiffiffiffiffiffiffiffiffi
2n�1

p
� X
�ðyÞ�04ðmod4Þ

jyi � X
�ðyÞ�24ðmod4Þ

jyi
�
;

where y is a classical n-bit string y1 . . . yn and�ðyÞ ¼
P

iyi
denotes the Hamming weight of y. We will use the latter
state for our proofs. Such states have a wide range of
applications, for example in nonlocal games, quantum
game theory and quantum computation.
Parties.—A party can be honest or dishonest. An honest

party does not knowwhich parties are honest and which are
dishonest. The dishonest parties can collaborate with each
other and control the source. Their goal is to convince the
honest parties that the source can create the n-party GHZ
state, while in reality this may not be true. They are
allowed to create a different state every time or entangle
the state with any auxiliary space.
Local resources.—A party has a trusted single-qubit

measurement device with two measurement settings and
a trusted classical random source.
Network resources.—Every pair of parties shares a pri-

vate classical channel, in other words, the communication
between two honest parties remains secret. This is the
standard setup for classical networks with dishonest par-
ties, since in the absence of private channels we cannot
guarantee security for more than a single honest party.
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Note that we want to use the least possible resources for
our protocol. Indeed, we only need each party to be able to
produce randomness, to perform single-qubit measure-
ments, and to securely communicate classical information
with the other parties. Since our goal is to construct pro-
tocols that can be widely available in the near future, it
is imperative to minimize the resources available to the
agents, especially the quantum resources that are consid-
ered more expensive than the classical ones, hence bring-
ing such tasks closer to reality.

Related work.—Most of the work on entanglement
verification has considered the case where all parties are
honest. For two parties, three models have been studied.

First, the standard model, where both parties trust their
devices but they do not trust the source. This model corre-
sponds to the setting of nonseparability tests, where the two
parties can perform together quantum tomography on the
state distributed by the source and thus verify the existence
of entanglement. In a cryptographic language, this corre-
sponds to a setting where all parties are guaranteed to be
honest. A related question concerning untrusted sources in
quantum key distribution protocols is discussed in [5].

Second, the device-independent model, where the par-
ties trust neither their quantum devices nor the source. This
model is related to the well-known setting of the Bell
nonlocality tests as well as to self-testing [6].

Third, the one-sided device-independent model [7],
where the security is asymmetric: one party trusts his
devices but the second party’s devices and the source are
untrusted. This model corresponds to the setting of gener-
alized quantum steering [8,9], where one party is also
given control of the source and tries to convince the other
party, who trusts his devices, that she can create entangle-
ment. In a cryptographic language, an honest party tries to
verify entanglement in the presence of a dishonest party
who controls the source. Recently, there have been experi-
mental demonstrations in this model [10–12].

For the multipartite case, much less is known. In the
standard model, pseudotelepathy [13] extends Mermin’s
game [2] to many parties; a maximally entangled state is
used to play the game and wins with probability 1, which is
strictly better than in the classical case. In the device
independent model, it was shown that honest parties who
do not trust their devices can verify genuine multipartite
entanglement by using appropriate entanglement witnesses
[14]. Finally, in [15] the authors present a unified frame-
work for n-party entanglement verification and provide
inequalities with different bounds for the different non-
locality classes that are considered.

Our work.—In our model, there are, in general, k honest
parties and n-k dishonest parties who control the source,
which is supposed to create an n-party GHZ state. Each
honest party does not know which other parties are honest.
Our goal is to provide an efficient test for an honest party,
such that the test passes only if the state produced by the

source creates entanglement between all k honest parties
and the n-k dishonest parties.
First, if all players are honest, we prove that any n-party

state that is �-away from the n-party GHZ state passes
the test with probability at most 1� �2=2. Second, in the
presence of any number of dishonest parties, we prove the
same quantitative statement, this time for any n-party state
that is �-away from the n-party GHZ state up to a local
unitary operation on the space of the dishonest parties.
For the special case of n ¼ 2, our model significantly

extends the results in the generalized quantum steering
setting by providing a tight analysis of the tradeoff between
the distance of the shared state to the n-party GHZ and the
probability of success of the test. For the case of n ¼ k, i.e.,
the standard model, our results again provide a tight analy-
sis of the tradeoff between the distance and the probability
the test passes. For general n parties and k honest ones, this
is the first rigorous analysis of an entanglement verification
test.
The protocol V.—Consider a source that is supposed to

create and distribute the state j�n
0i to n parties. We present

a verification protocol V that one party, called the Verifier,
can run with the other n� 1 parties, in order to verify that
the state j�i created by the source is in fact the correct one.
(1) The Verifier selects for each i 2 ½n� a random input
Xi 2 f0; 1g, such that

P
n
i¼1 Xi � 0 (mod 2) and sends it to

the corresponding party via a private classical channel.
(2) If Xi ¼ 0, party i performs a Z operation. If Xi ¼ 1,
party i performs a Hadamard operation. (3) Party i mea-
sures in the fj0i; j1ig basis and sends the corresponding
outcome Yi 2 f0; 1g to the Verifier via the private channel.
(4) The Verifier accepts the result if and only if

Xn
i¼1

Yi � 1

2

Xn
i¼1

Xi ðmod2Þ:

The above protocol assumes that a specific party plays
the role of the Verifier. Wewill later address the question of
how to pick such a Verifier among all honest parties. Note
that this test has been used before [13]; however, our
analysis is entirely different. We denote by Tðj�iÞ the
event that the Verifier accepts the result of the Test, when
the joint state is j�i.
Correctness of the protocol.—We want to show that the

state j�n
0i passes the test with probability 1. We need to

define the following state:

j�n
1i ¼

1ffiffiffiffiffiffiffiffiffiffi
2n�1

p
� X
�ðyÞ�1 ðmod4Þ

jyi � X
�ðyÞ�3 ðmod4Þ

jyi
�
:

It is easily verifiable (from the definition of the states) that
for any k and n,

j�n
0i ¼

1ffiffiffi
2

p ½�k
0ij�n�k

0 i � j�k
1ij�n�k

1 i�: (1)

From condition
P

n
i¼1 Xi � 0 (mod 2) we have two cases:

(1) ð12
P

n
i¼1 XiÞ � 0 (mod 2): This means that the sum of
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the inputs is a multiple of 4. Using Eq. (1), it can be proven
that the state j�n

0i goes to �j�n
0i when we apply to it an

operator consisting of a 0 (mod 4) number of single-qubit
Hadamards and Z gates on the remaining qubits. Hence, we
always have

P
n
i¼1 Yi � 0 (mod 2).

(2) ð12
P

n
i¼1 XiÞ � 1 (mod 2): This means that the sum of

the inputs is even but not a multiple of 4. Again, it can be
proven that the state j�n

0i goes to�j�n
1iwhen we apply to

it an operator consisting of a 2 (mod 4) number of single-
qubit Hadamards and Z gates on the remaining qubits.
Hence, we always have

P
n
i¼1 Yi � 1 (mod 2).

Security in the honest model.—We now look at the
model where all n parties are honest and analyze the
probability that our test accepts a state as a function of
the distance of this state to j�n

0i. We first analyze the case

of a pure state. Denoting by Dðjc i; j�iÞ the trace distance
between two states jc i and j�i, we have

Theorem 1.—IfDðj�i; j�n
0iÞ ¼ �, Pr½Tðj�iÞ� � 1� �2

2 .

The main idea of the proof is to show that our test is
equivalent to performing a POVM fPn; I � Png, (where
the first outcome corresponds to acceptance) with

Pn ¼ j�n
0ih�n

0 j þ 1
2ISn ;

where Sn denotes the subspace of n-qubit states that are
orthogonal to both j�n

0i and j�n
1i, and ISn denotes the

projection on this subspace. In other words, we show that
the state j�n

0i passes the test with probability 1, the state

j�n
1i passes the test with probability 0, and all other states

in the orthogonal subspace pass the test with probability
exactly 1=2. The proof of this statement is in fact quite
involved and is done by induction on the dimension of the
state (see [16] for details). With this characterization for
our test, we express any state j�i such thatDðj�i; j�n

0iÞ ¼
� as j�i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
j�n

0i þ
P

2n�1
i¼1 �ij�n

i i, where for i � 2,
j�n

i i 2 Sn and
P

2n�1
i¼1 �2i ¼ �2, and hence we have

Pr½Tðj�iÞ� ¼ trðPnj�iÞ � 1� �2

2 .

Note that for a mixed state � ¼ fpi; j�iig, Pr½Tð�Þ� ¼P
ipi Pr½Tðj�iiÞ�. Then, by convexity we have

Corollary 1: If Dð�; j�n
0iÞ ¼ �, Pr½Tð�Þ� � 1� �2

2 .

Security in the dishonest model.—We look now at the
model where the honest Verifier runs the test in the pres-
ence of dishonest parties. The Verifier is considered to be
known to all parties. We prove in this case a theorem
similar to the case of all honest parties. It should be clear
here that there is no way for the honest parties to determine
whether the dishonest parties act as n-k independent
parties each holding one qubit or whether they have
colluded to one party. For example, the state j�kþ1

0 i ¼
1ffiffi
2

p ½�k
0i0i ��k

1i1i�, where the n-k dishonest parties hold a
single qubit, passes the test with probability 1, since the
dishonest parties can locally map this state to j�n

0i. Hence,
the correct security statement must take into account the
fact that the dishonest parties may apply some operator on
their space.

Theorem 2. Let j�i be the state of all n parties. If
minUDðUj�i; j�n

0iÞ ¼ �, where U is an operator on the

space of the dishonest parties, then Pr½Tðj�i� � 1� �2

2 .

Let us assume, without loss of generality, that the n
parties share a state of the form j�i ¼ j�k

0ij�0i þ
j�k

1ij�1i þ jXi, where in jXi the component of the hon-
est parties is orthogonal to j�k

0i and j�k
1i. For the dishonest

parties, making the Verifier accept the test is equivalent
to guessing the honest output YH: ¼ P

HYi (mod 2), where
H is the set of the honest parties, before announcing their
measurement outcomes. The optimal probability of guess-
ing YH given XH: ¼

P
HXi (mod 2) is given by the

Helstrom measurement. Let p ¼k j�0i k2 , 1� p ¼
k j�1i k2 and h�0j�1i2 ¼ pð1� pÞcos2�. Then, we cal-
culate that

Pr½guessYH� � 1� 1

2

�
pð1� pÞcos2�þ ð2p� 1Þ2

4

�
:

Note that the probability of guessing YH is independent
of the state jXi. Now, consider the operation R acting on
the space of the dishonest parties:

Rj�bi ¼k j�bi k ðcos
�
�

4
� �

2

�
j�n�k

b i

þ sin

�
�

4
� �

2

�
j�n�k

1�biÞ

for b 2 f0; 1g. For the new shared state j�i ¼ Ik � Rj�i,
we have h�j�n

0i2 ¼ 1
4 ð1þ sin�Þð1þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞp Þ. Since

by assumption h�j�n
0i2 � 1� �2, this concludes the proof

(see [16] for more details).
Security for all honest parties.—We have presented a

protocol that a Verifier can use to verify the state of an
untrusted source in the presence of dishonest parties with
minimal resources. Our protocol can be useful in the
scenario where some party wants to perform a complex
quantum computation and needs to delegate parts of the
computation to other parties, who, of course, would need
some source of multipartite entanglement in order to per-
form the joint computation. Note that the Verifier can
repeat the protocol sequentially in order to increase the
probability of detecting an erroneous state.
In a more general scenario, however, where parties need

to perform securely some distributed multipartite compu-
tation using the multipartite entangled state as an initial
shared resource, we need to guarantee security for all
honest parties at the same time. In other words, we would
like a protocol that guarantees to all honest parties that
they will only accept to use a state for the computation
that comes from a source that produces states that are very
close to an n-party GHZ state. A priori, such a task is
impossible, since any such protocol could be used to
produce unbiased strong coins [17] (the parties could just
measure the entangled state to produce coins). Hence, we
need to provide some additional resource.
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Trusted common random source (CRS).—We assume
that all parties have access to a trusted classical random
source that provides them with the same randomness.

This is, of course, a powerful, but necessary, resource.
One way to achieve it would be to assume that at least a
third of all parties are honest, since this implies the ability
to securely produce random bits only with authenticated
classical communication [18]. Note that in order to achieve
quantum secure multiparty computation, at least a majority
of honest parties is required [19], in which case it is
possible to construct a CRS.

We describe how to repeat our verification test in order
to guarantee the following: when the parties decide to use
the state for computation, then the probability that the
state produced by the source is �-away from the n-party
GHZ state goes to zero exponentially fast with the num-
ber of repetitions. Note that our guarantee is on the state
produced by the source. Of course, we cannot prevent the
dishonest parties from destroying the entanglement
with the honest parties just before using this state for
further computation. However, we argue that our test is
still useful for secure multiparty computation. First, as we
noted before, if the goal of the dishonest parties is to
convince the honest parties of the source’s ability to
create entanglement, destroying the entanglement after
the source has produced it does not help them. Second,
in general, in secure multiparty computation, one of the
main goals is to guarantee that the inputs of the honest
parties remain secret for the dishonest parties. Since in
our model the parties will only perform local quantum
operations (if the parties could send their qubits to other
parties, then checking the source would be much easier by
having all qubits sent to the Verifier), by destroying the
entanglement, the dishonest parties cannot increase their
information about the honest parties inputs. Third, we still
have a strong guarantee on the honest player states from
which they can, for example, extract correlated secret
bits.

Let S be a security parameter.
The Symmetric protocol.—(1) The source distributes a

state j�i to the n parties (the honest source distributes the
state j�n

0i). (2) Parties receive r 2 f0; 1gS and i 2 ½n� from
CRS. (a) If r ¼ 0, the state j�i is used for computation.
(b) If r � 0 Party i runs protocol V with j�i. If he rejects,
then abort, otherwise go to Step 1.

Note that the source may create a different state at every
repetition of the protocol. It is also important that the state
is distributed before the parties receive the randomness
from the CRS. Let C� be the event that the symmetric
protocol has not aborted and that the state used for
the computation, which we denote by j�i, is such that
minUDðUj�i; j�n

0iÞ � �, where U is an operator on the

space of the dishonest parties. We will prove the
following:.

Theorem 3.—For all � > 0, Pr½C�� � 2�S 2n
k�2

.

The proof is given in [16]. When the Verifier is dishon-
est, we suppose that the state always passes the test. By
choosing S ¼ log2n�

�2
for some constant � > 0, all honest

parties have the guarantee that the probability the state
used has distance at least � from the correct one, is at
most 1=�. Note that the expected number of repetitions of
the protocol is 2S, which, with our choice of S, is poly-
nomial in n and 1=� [and with probability exponentially
close to 1, the number of repetitions is at most Oð2SÞ].
Moreover, this protocol provides guarantees to all honest
parties, unlike the case of quantum steering and our multi-
partite generalization. To this end, it was necessary to make
the assumption of a trusted classical random source.
Discussion.—It is important to note that our analysis

does not take into account losses and noise that appear in
a realistic setting. It will be interesting to study such
conditions, as was recently done for bipartite quantum
steering [10]. We also note that although our results pro-
vide a verification test for the GHZ state, the analysis
should, in principle, be applicable to all states for which
a Bell-type test is available, such as stabilizer states.
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