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In quantum mechanics, the Heisenberg uncertainty relations and the Cramér-Rao inequalities typically

limit the precision in the estimation of a parameter through the standard deviation of a conjugate

observable. Here we extend these relations by giving a bound to the precision of a parameter in terms

of the expectation value of the conjugate observable. This has both foundational and practical

consequences: in quantum optics it resolves a controversy over which is the ultimate precision in

interferometry.
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Quantum mechanics limits the accuracy with which one
can measure conjugate quantities: the Heisenberg uncer-
tainty relations [1,2] and the quantum Cramér-Rao inequal-
ity [3–6] show that no procedure for estimating the value of
some quantity (e.g., a relative phase) can have a precision
that scales more accurately than the inverse of the standard
deviation of a conjugate quantity (e.g., the energy) evaluated
on the state of the probing system. This paper exhibits a new
bound on quantum measurement: we prove that the preci-
sion of measuring a quantity cannot scale better than the
inverse of the expectation value (above a ‘‘ground state’’)
of the conjugate quantity. We use the bound to resolve an
outstanding problem in quantum metrology [7]: in particu-
lar, we prove the longstanding conjecture of quantum optics
[8–13]—recently challenged [14–16]—that the ultimate
limit to the precision of estimating phase in interferometry
is bounded below by the inverse of the total number of
photons employed in the interferometer.

The statistical nature of quantum mechanics induces
fluctuations that limit the ultimate precision that can be
achieved in the estimation of any parameter x. These
fluctuations can be connected to the properties of a con-
jugate operator H that generates translations Ux ¼ eixH of
the parameter x. In particular, if the encoding stage
is repeated several times using � identical copies of
the same probe input state �x, the root mean square
error (RMSE) �X of the resulting estimation process
is limited by the quantum Cramér-Rao bound [3–6]

�X � 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�QðxÞp

, where QðxÞ is the quantum Fisher
information. For pure probe states and unitary encoding
mechanism Ux, QðxÞ is equal to the variance ð�HÞ2
(calculated on the probe state) of the generator H. In this
case, the Cramér-Rao bound takes the form

�X � 1=ð2 ffiffiffi
�

p
�HÞ (1)

of an uncertainty relation [5,6]. This bound is asymp-
totically achievable in the limit of � ! 1 [3,4]. If the
parameter x can be connected to an observable, Eq. (1)

corresponds to the Heisenberg uncertainty relation for
conjugate variables [1,2]. (Note that we can also exploit
quantum ‘‘tricks’’ such as entanglement and squeezing in
optimizing the state preparation of the probe and/or the
detection stage [17].)
Here we will derive a bound in terms of the expectation

value hHi of H, which in the simple case of constant �X,
takes the form (see Fig. 1)

�X � �=½�ðhHi � E0Þ�; (2)

where E0 is the value of a ‘‘ground state,’’ the minimum
eigenvalue of H whose eigenvector is populated in the

FIG. 1 (color online). Lower bounds to the precision estima-
tion �X as a function of the experimental repetitions �. The gray
area in the graph represents the forbidden values due to our
bound (2). The hatched (dashed-line) area represents the forbid-
den values due to the Cramér-Rao bound, or the Heisenberg
uncertainty, (1). Possible estimation strategies have precision
�X that cannot penetrate in the colored regions. For large � the
Cramér-Rao bound (which scales as 1=

ffiffiffi
�

p
) is stronger, as

expected since in this regime it is achievable. Our bound is
not achievable in general, so that the gray area may be expanded
when considering specific estimation strategies. [Here we used
hHi � E0 ¼ 0:1 (a.u.) and �H ¼ 4 (a.u.).]
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probe state (e.g., the ground state energy when H is the
probe’s Hamiltonian), and � ’ 0:091 is a constant of order
one. We stress that, because of the presence of the factor �,
the quantity at the denominator of (2) is associated to the
global generator of translations of the � copies. The in-
equality (2) holds both for biased and unbiased measure-
ment procedures, for pure and mixed probe states, and it is
consistent with the recent bounds [18] on the number of
distinguishable states crossed by the evolution Ux. As
discussed in the following, the bound holds for ‘‘good’’
estimation strategies that provide enough information on
the parameter x [19]. Note also that the rhs of (2) diverges
for hHi ! E0 because, if the probe is in the ground state of
the generator H, its final state is independent of x and
provides no information on it.

The bound (2) must be modified for procedures where
�X explicitly depends on x, as in the examples discussed in
Refs. [14,15]: a constraint of the form (2) is placed on the
average value of �XðxÞ. Specifically given any two values
x and x0 of the parameter which are sufficiently separated,
one has

�XðxÞ þ �Xðx0Þ
2

� �

�ðhHi � E0Þ : (3)

Hence, even though we cannot exclude that strategies
whose error �X depend on x may have a ‘‘sweet spot’’
where the bound (2) may be beaten [14,15], Eq. (3) shows
that the average value of�X is subject to a bound that scales
as the inverse of �ðhHi � E0Þ. As a consequence, these
strategies are of no practical use since the sweet spot de-
pends on the unknown parameter x to be estimated and the
extremely good precision in the sweet spot must be counter-
balanced by a correspondingly bad precision nearby.

Proving Eq. (2) in full generality is clearly not a trivial
task since no definite relation can be established between
�ðhHi � E0Þ and the term

ffiffiffi
�

p
�H on which the Cramér-

Rao bound is based. In particular, scaling arguments on �
cannot be used since, on one hand, the value of � for which
Eq. (1) saturates is not known (except in the case in which
the estimation strategy is fixed [8], which has little funda-
mental relevance) and, on the other hand, input probe states
� whose expectation values hHi depend explicitly on �
may be employed, e.g., see Ref. [15]. To circumvent these
problems our proof is based on the quantum speed limit
[21], a generalization of the Margolus-Levitin [22] and
Bhattacharyya bounds [23,24] which links the fidelity F
[25] between the two joint states ���

x and ���
x0 to the

difference x0 � x of the parameters x and x0 imprinted on
the states through the mapping Ux ¼ e�ixH [26]. In the
case of interest here, the quantum speed limit [21] implies

jx0 � xj � �

2
max

�
�ðFÞ

�ðhHi � E0Þ ;
�ðFÞffiffiffi
�

p
�H

�
; (4)

where the � and
ffiffiffi
�

p
factors at the denominators arise from

the fact that here we are considering � copies of the

probe states �x and �x0 , and where �ðFÞ ’ �2ðFÞ ¼
4arccos2ð ffiffiffiffi

F
p Þ=�2 are decreasing functions defined in

[21]. The inequality (4) tells us that the parameter differ-

ence jx0 � xj induced by a transformation e�iðx0�xÞH that
employs resources hHi � E0 and �H cannot be arbitrarily
small (when the parameter x coincides with the evolution
time, this sets a limit to the ‘‘speed’’ of the evolution, the
quantum speed limit).
We now give the main ideas of the proof of (2) by

focusing on a simplified scenario, assuming pure probe
states jc xi ¼ Uxjc i, and unbiased estimation strategies
constructed in terms of projective measurements with
RMSE �X that do not depend on x. The detailed proof is
given in [27], where these restrictions are dropped. For
unbiased estimation, x ¼ P

jPjðxÞxj and the RMSE coin-

cides with the variance of the distribution PjðxÞ, i.e.,�X ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
jPjðxÞ½xj � x�2

q
, where PjðxÞ ¼ jhxjjc xi��j2 is the

probability of obtaining the result xj while measuring the

joint state jc xi�� with a projective measurement on
the joint basis jxji. Let us consider two values x and x0 of
the parameter that are further apart than the measurement’s
RMSE, i.e., x0 � x ¼ 2��X for a � * 1 that will be
specified later. If no such x and x0 exist, the estimation is
extremely poor: basically the whole domain of the parame-
ter is smaller than (or of the same order of) the RMSE.
Hence, we can always assume that such a choice is possible
for estimation strategies that are sufficiently accurate to be
of interest, as discussed in detail below. The Chebyshev
inequality states that for an arbitrary probability distribu-
tion p, the probability that a result x lies more than ��X
away from the average � is upper bounded by 1=�2,
namely pðjx��j � ��XÞ � 1=�2. It implies that the
probability that measuring j�x0 i :¼ jc x0 i�� the outcome
xj lies within ��X of the mean value associated with

j�xi :¼ jc xi�� cannot be larger than 1=�2. By the same
reasoning, the probability that measuring j�xi the outcome
xj will lie within ��X of the mean value associated with

j�x0 i cannot be larger than 1=�2. This implies that the
overlap between the states j�xi and j�x0 i cannot be too
large: more precisely F ¼ jh�xj�x0 ij2 < 4=�2. Replacing
this expression into (4) (exploiting the fact that � and� are
decreasing functions) we obtain

2��X � �

2
max

�
�ð4=�2Þ

�ðhHi � E0Þ ;
�ð4=�2Þffiffiffi
�

p
�H

�
; (5)

whence we obtain (2) by optimizing over � the first term of
the max, i.e., choosing � ¼ sup���ð4=�2Þ=ð4�Þ ’ 0:091,
maximized for � ’ 4:09. The second term of the max gives
rise to a quantum Cramér-Rao type uncertainty relation
(or a Heisenberg uncertainty relation) that, consistently
with the optimality of Eq. (1) for � � 1, has a pre-factor
��ð4=�2Þ=ð4�Þ that is smaller than 1=2 for all �. This
means that for large � the bound (2) will be asymptotically
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superseded by the Cramér-Rao part, which scales as /
1=

ffiffiffi
�

p
and is achievable in this regime. In other words,

when it is physically significant, the Cramér-Rao bound
always wins over the bound (2).

Analogous results can be obtained (see [27]) when con-
sidering more general scenarios where the input states of
the probes are not pure, the estimation process is biased,
and it is performed with arbitrary (possibly adaptive) posi-
tive operator-valued measure (POVM) measurements. [In
the case of biased measurements, the constant � in (2) and
(3) must be replaced by � ¼ sup���ð4=�2Þ=½4ð�þ 1Þ� ’
0:074 (maximized for � ’ 4:64) where a þ1 term appears
in the denominator.] In this generalized context, whenever
the RMSE depends explicitly on the value x of the parame-
ter, the result (2) derived above is replaced by the weaker
relation (3). Such inequality clearly does not necessarily
exclude the possibility that at a ‘‘sweet spot’’ the estima-
tion might violate the scaling (2), as happens, e.g., in the
strategies of [14,15], which are, hence, fully compatible
with our bounds. However, Eq. (3) is still sufficiently
strong to exclude accuracies of the form �XðxÞ ¼
1=Rðx; �hHiÞ where, as in Refs. [15,28], Rðx; zÞ is a func-
tion of z that, for all x, increases more than linearly, i.e.,
limz!1z=Rðx; zÞ ¼ 0.

The bound (2) has been derived under the explicit as-
sumption that x and x0 exists such that x0 � x ¼ 2��X for
some � ’ 4:09, which requires one to have x0 � x � 2�X.
This means that the estimation strategy must be good
enough: the probe is sufficiently sensitive to the trans-
formation Ux that it is shifted by more than �X during
the interaction. The existence of pathological estimation
strategies which violate such condition cannot be excluded
a priori. Indeed trivial examples of this sort can be easily
constructed, a fact which may explain the complicated
history of the Heisenberg bound with claims [8–13] and
counterclaims [14–16,28]. It should be stressed, however,
that the assumption x0 � x � 2�X is always satisfied ex-
cept for extremely poor estimation strategies with such
large errors as to be practically useless. One may think of
repeating such a poor estimation strategy � > 1 times and
of performing a statistical average to decrease its error.
However, for sufficiently large � the error will decrease to
the point in which the � repetitions of the poor strategy are,
collectively, a good strategy and hence, again subject to our
bounds (2) and (3).

Our findings are particularly relevant in the field of
quantum optics, where a controversial and long-debated
problem [8–16,28] is to determine the scaling of the ulti-
mate limit in the interferometric precision of estimating a
phase as a function of the total average energy devoted to
preparing the � copies of the probes: it has been conjec-
tured [8–13] that the phase RMSE is lower bounded by the
inverse of the total number of photons employed in the
experiment, the ‘‘Heisenberg bound’’ for interferometry
[29]. It corresponds to an equation of the form of Eq. (2),

choosing x ¼ 	 (the relative phase between the modes in
the interferometer) and H ¼ aya (the number operator).
Scalings of this sort have been established for some re-
definitions of the uncertainty measure [3] or for specific
detection strategies [30] (see, e.g., Refs. [31–33] and refer-
ences therein) while its achievability for the RMSE mea-
sure has been recently proven in [34]. Still its general
validity for the RMSE has been questioned several times
[14–16,28]. In particular schemes have been proposed
[15,28] that apparently permit better scalings in the achiev-
able RMSE (for instance �X � ð�hHiÞ�
 with 
 > 1).
None of these protocols have conclusively proved such
scalings for arbitrary values of the parameter x, but a
sound, clear argument against the possibility of breaking
the 
 ¼ 1 scaling of Eq. (2) was missing up to now. Our
results validate the Heisenberg bound by showing that it
applies to all those estimation strategies whose RMSE �X
does not depend on the value of the parameter x and that
the remaining strategies can have good precision only for
isolated values of the unknown parameter x.
After the appearance of the first version of our manu-

script, related papers have appeared in which the bounds
derived here are analyzed in the presence of nontrivial
prior information [20,35]. Moreover, for optical interfer-
ometry our findings have been strengthened in Ref. [36]
and a compatible bound dependent on the prior informa-
tion was obtained through rate distortion theory in [37].
We acknowledge useful feedback from D. Berry, M.
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