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Pusey, Barrett, and Rudolph introduce a new no-go theorem for hidden-variables models of quantum

theory. We make precise the class of models targeted and construct equivalent models that evade

the theorem. The theorem requires assumptions for models of composite systems, which we examine,

determining compactness as the weakest assumption needed. On that basis, we demonstrate results of

the Bell-Kochen-Specker theorem. Given compactness and the relevant class of models, the theorem can

be seen as showing that some measurements on composite systems must have built-in inefficiencies,

complicating its testing.
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Developments in quantum information theory have
revived interest in hidden-variables theories [1], most
recently focused on a new result, the Pusey-Barrett-
Rudolph (PBR) theorem [2]. This theorem has emerged
as a far-reaching no-go result whose implications are
cited as possibly even more dramatic [3] than Bell’s
theorem [4]. One of Einstein’s several EPR arguments,
for example, can be used to see PBR as offering an
alternative route to quantum nonlocality [2,5]. The theo-
rem may also limit promising methods, based on hidden-
variables models, for simulating quantum computation
classically and efficiently [2]. Here we examine the
framework of the theorem, including critical assumptions
needed to derive it. We characterize the model structures
targeted by the theorem and introduce the idea of built-in
inefficiency, which helps understand the restrictions
posed by the theorem and bears on its testability. We
identify the weakest assumption on which the theorem
rests, and use that to demonstrate the breakdown of
additivity associated with the Bell-Kochen-Specker
theorem [6,7]. PBR understand the significance of their
result as undermining the interpretation of the quantum
state as ‘‘mere information’’ (or ‘‘knowledge’’) about the
real physical state of a system [2]. Here we investigate
aspects of the result itself, rather than focusing on inter-
pretive theses proposed on its behalf.

Hidden variables.—To provide a context for the PBR
theorem, we review the standard approach to modeling a
quantum system using hidden variables. For a fixed system,
given any state jc i, a hidden-variables model introduces a
probability distribution (density function) pc that is corre-

lated to jc i and whose support is a space �c of ‘‘hidden

variables’’ �, with
R
�c

pc ð�Þd� ¼ 1. The �’s function to

fix outcome probabilities for any measurement of the
system. To that end, the model associates with each ob-
servable A a response functionAc ðS; �Þ giving the proba-
bility at � that a measurement of A, initiated in state jc i,
has an outcome in the set S. If Pc

A ðSÞ is the Born

probability that a measurement of A, initiated in state
jc i, yields an outcome in S, then we require that

Pc
A ðSÞ ¼

Z

�c

Ac ðS; �Þpc ð�Þd�: (1)

Thus a successful model retrieves the quantum (Born)
probabilities for measurement outcomes of observables
as averages over these � probabilities [8]. For simplicity,
we choose �c to have unit measure,

R
�c

d� ¼ 1. Since

the PBR theorem is static, we will not be concerned with
the dynamics of state change in hidden-variables models.
To ensure that every measurement has an outcome, we can
require that if SðAÞ is the spectrum of A, then

Ac ðSðAÞ; �Þ ¼ 1: (2)

In general, �c , pc , and the response functions can all

depend on jc i. In understanding the implications of the
PBR result, it will be important to distinguish c -dependent
models, where a response function depends on jc i, and
c -independent models. Some models require c depen-
dence. For example, if pc is uniform, pc ð�Þ ¼ 1 8� 2
�c , then Eq. (1) implies that the model must be c depen-

dent for all jc i. (A model of this type was considered by
Bell [4].)
PBR theorem.—Crucially, the PBR theorem, which we

now sketch, only concerns c -independent models. For
such models, PBR start from a single system and arbitrary,
distinct states jc 1i and jc 2i. They suppose that the asso-
ciated distributions pc 1

and pc 2
share at least one hidden

variable � in their support (technically, that the overlap of
their supports has nonzero measure). They consider a
collection of L such systems and assume that each system
can be prepared independently in one of the states jc 1i and
jc 2i. (L depends on hc 1jc 2i in a manner specified by
PBR.) This results in 2L possible preparations of the com-
posite system, corresponding to 2L tensor products of the
form j�ji ¼ jc x1i � jc x2i � � � � � jc xLi, xi 2 f1; 2g.
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PBR show how to construct a joint measurement M on the
composite system (in general,M is a quantum circuit) such
that, under assumptions concerning the composition and
independence governing hidden variables �c of the com-
posite, those �c must issue in no result for M provided its
response function is c independent.

The following lemma is at the heart of the theorem.
Lemma. (PBR) Consider a discrete observable M with

eigenvalues j ¼ 1; 2; . . . ; N whose eigenvectors span the
space of the system. Suppose there are distinct states j�ji
such that P

�j

M ðfjgÞ ¼ 0. (PBR display cases where N � 4
and these conditions are satisfied.) Suppose the hidden-
variables spaces for these states are not disjoint, so some
hidden variable �c is contained in every ��j

. Then if the

model is �j independent so that the response functions

satisfy M�jðS; �Þ � MðS; �Þ for all j, we get a contra-
diction. Equation (1) implies that

M ðf1g;�cÞ¼Mðf2g;�cÞ¼���¼MðfNg;�cÞ¼0: (3)

So MðSðMÞ; �cÞ ¼ 0, contradicting Eq. (2).
No contradiction arises, however, for �j-dependent

models. One can construct such a model for M by using
the uniform distribution and letting Eq. (1) define the
response functions, for all � and j, as the Born probabilities

themselves: M�jðS; �Þ ¼ P
�j

M ðSÞ.
Alternatively, the contradiction is avoidable if we allow

for no-shows (measurements with no result) by adding to
SðMÞ a conventional null ‘‘value’’ � to form an augmented
spectrum SþðMÞ and requireMðSþðMÞ; �Þ ¼ 1 in place of
Eq. (2). The Born probabilities are then recovered condi-
tional on those measurements having an outcome. That is,
for any S � SðMÞ, we require

Pc
MðSÞ ¼

R
�c

Mc ðS; �Þpc ð�Þd�
R
�c

Mc ðSðMÞ; �Þpc ð�Þd�
; (4)

rather than Eq. (1). This is the strategy of the ‘‘prism
models’’ [9], which are local hidden-variables models
that accommodate the detection inefficiencies of typical
photon experiments testing Bell-like inequalities [4]. Then
the common �c would simply give rise to a built-in in-
efficiency, equal to Mðf�g; �cÞ. That is, �c predetermines
not only outcome probabilities but also whether the system
will produce any outcome at all when measured. The term
‘‘built-in’’ emphasizes that the no-detection property is
intrinsically associated with the system, rather than with
ordinary detector errors. Thus the PBR result may be seen
as showing how inefficiencies arise as a fundamental prop-
erty of certain hidden-variables models if the response
functions are state independent.

Mixed versus segregated models.—Since the PBR theo-
rem is concerned with what happens when hidden variables
overlap from one state to another, let us define models as
mixed if there are distinct jc 1i and jc 2i whose associated
hidden-variables spaces �c 1

and �c 2
overlap, otherwise

call them segregated [10]. In a segregated model, the
connection between hidden variables and states is func-
tional: � corresponds to exactly one pure state jc i; indeed,
each � 2 �c corresponds to that same state and in that

sense specifies it. We caution, however, that this correlation
should not encourage thinking of the quantum state as a
physical property of the system any more than the corre-
spondence between your fingers with the numbers 1 to 10
makes those numbers into physical things. (Correlation is
not causation, much less is it physical reduction.)
A brief sketch of some toy models—mixed and segre-

gated—will prepare us to demonstrate important connec-
tions between these two concepts. The states are qubits and
the observables are bivalent (� 1). For simplicity, we
consider deterministic models, Ac ðS; �Þ 2 f0; 1g. Then
we can write Ac ðS; �Þ � Ac ð�Þ, which now simply
yields the outcome of the A measurement [11]. Since our
state space is two dimensional, we ignore complications
concerning contextuality arising in dimensions � 3 [7].
Mixed toy model.—No matter what the state, the �’s are

just numbers in ð0; 1�. For arbitrary jc i we represent
observable A by a state-dependent response function

Ac ð�Þ with values �1, defined as Ac ð�Þ ¼ 1 iff 0<

� 	 Pc
A ðf1gÞ. We choose a uniform hidden-variables dis-

tribution. Then values of observables are state dependent,
but the hidden-variables distribution is not. Trivially, this
model returns the Born probabilities, since for every jc i,
Pc
A ð1Þ ¼

RPc
A
ð1Þ

0 d�.
Segregated toy models.—These models mimic the pre-

vious one, but here we want the hidden-variables distribu-
tion to depend on the state and in such a way, moreover,
that no hidden variables overlap from one state to another.
Simple modifications readily achieve this. For example, we
may assign a different unit interval on the real line to each
distinct state and proceed as above for each interval. Or,

we may assign each state jc i a direction ĉ on the unit
circle and redo the proceeding construction on a unit radius
in that direction. Like the original, both models return the
quantum statistics; indeed, apart from the particular
geometry of segregation, they are structurally identical
to the mixed model. We now show that one can always
‘‘unmix’’ in the above manner.
Proposition 1. Given any mixed model, regardless of

any state-dependent response functions, there are structur-
ally equivalent segregated models returning exactly the
same statistics.
The trick here is to see that if we make a 1:1 correspon-

dence to some other domain, all probabilistic structure
goes through isomorphically when we redefine the distri-
butions and functions using the new names. For example,
rename every � 2 �c as a pair (�; c ) and call the result-

ing space of pairs �0
c . Then, whether or not �c and ��

overlap for jc i � j�i, �0
c and �0

� are disjoint. Now

redefine the response functions and distributions in terms
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of the pairs. Let Ac ðS; �Þ ¼ A0c ðS; ð�; c ÞÞ for a state-
dependent response function, otherwise set AðS; �Þ ¼
A0ðS; ð�; c ÞÞ on each space �0

c . If � is a

pc -measurable subset of �c , then let pc ðf�j� 2 �gÞ ¼
p0
c ðfð�; c Þj� 2 �gÞ define the distribution p0

c and its

measurable subsets of �0
c . This construction does not

change probabilities or expectation values.
Given our segregated toy models and this simple proce-

dure for segregating any mixed model, it is hard to see
physical significance in segregation as such. Perhaps from
a computational viewpoint, mixed models may be more
efficient in representing information. With that in mind,
it is interesting to ask whether a given segregated model
can be transformed into an equivalent mixed one.

Proposition 2. Given any segregated model, there are
structurally equivalent mixed models returning exactly the
same statistics.

An illustration of this is worked out in [12] for a model
of Bell’s [6]. There seems to be a generic way to mix using
the following procedure. First tag the segregated elements
with new names, in the spirit of the preceding construction.
Then map the newly tagged elements from separate spaces
onto one. Provided all the spaces have the same cardinality
(which one can always take to be the continuum, as in our
toy illustrations), this is possible. Finally, use the new
names to redefine the distributions and response functions
of the mixed structure in the manner of Proposition 1.

Understanding PBR: Assumptions and implications.—
The theorem shows the price we may have to pay for a
hidden-variables model that is not segregated. We put it
this way to make clear that PBR do not show that mixed
models are predictively flawed or fail to yield the correct
quantum statistics for some observables or states of a given
system. Rather, PBR demonstrate a possible difficulty for
hidden-variables models in forming composites of identi-
cally prepared systems. The difficulty results from �’s that
breach segregation. In our mixed toy model, this is true for
every �, likewise for the state-independent model for
electron spin constructed in [7]. PBR argue that such
shared �’s may give rise to hidden variables of the com-
posite that issue in no outcome for certain measurements.
Thus the price for using nonsegregated hidden-variables
models is that certain measurements on composites
may have built-in inefficiencies—‘‘may have’’ because
the demonstrated inefficiency depends critically on two
assumptions.

The first assumption, as we have emphasized, is that the
relevant response functions are state independent. This
leaves only the distribution of hidden variables to reflect
how a measurement ‘‘knows’’ the right probabilities from
one state to another. While this is an interesting position to
investigate, a more common practice in constructing
hidden-variables models is to have quantum states provide
essential structure that the hidden variables then supple-
ment. This is the path Einstein, whom PBR quote, followed

in his one attempt to introduce hidden variables [13].
Similarly, the de Broglie–Bohm versions of hidden varia-
bles rely on the quantum state, to which they add determi-
nate particle positions or field quantities.
The second assumption concerns the minefield of how

components relate to a composite. PBR assume that hidden
variables of components entirely make up hidden variables
of the composite, i.e., that given fixed measurement prop-
erties, outcome-determining properties of the parts com-
pletely make up the corresponding properties of the whole
([2], p. 2). Indeed they assume more. For they conclude
that if the probability of overlap for the single systems is q,
then the probability of overlap for the joint system com-
posed of L such systems is qL. So they take the underlying
properties of each subsystem to contribute stochastically
independently with respect to the whole. Correlations,
however, cannot be ruled out, even if the preparations
appear to be independent, because procedures for prepar-
ing the individual subsystems may occur together closely
in spacetime or share common sources of energy, as well
as a common past. On this basis, PBR’s independence
assumption is questioned by Hall [14], who offers a
weaker condition, compatibility, as sufficient for a null-
measurement result. Compatibility assumes that if � lies in
the support of the distributions for each of jc 1i and jc 2i,
then it is also in the support of the distributions associated
with all product states jc x1i � � � � � jc xLi, xi 2 f1; 2g.
Like stochastic independence, this assumes that the very
same �’s, which govern the response of each component
part, also govern the response of the whole. The thought
can only be that the parts completely determine the
whole. Surely for quantum systems this assumption is
very strong, given entanglement and other features of
‘‘quantum wholeness.’’ It would be more realistic to allow
native variables for composites. One can then weaken the
condition necessary for the PBR result to compactness,
defined as follows.
Definition. (Compactness) If hidden-variables distribu-

tions pc 1
and pc 2

associated with states jc 1i � jc 2i share
at least one � in their support, then there is some �c in the
support of all the distributions associated with any tensor
product of the form jc x1i � � � � � jc xLi, xi 2 f1; 2g.
We could gloss the principle this way: if the response of

every component part is determined by something, then
there is something that determines the response of every
composite made up of just these parts. This is weaker than
compatibility, and does not rely on PBR’s stochastic
independence. It is nevertheless a strong condition of uni-
formity (like moving from ‘‘Everyone has a mother’’ to
‘‘There is a mother of us all’’). It seems to be the weakest
condition that allows a PBR argument to go through.
With the framework just described in place, we can now

formulate the PBR result simply this way.
Theorem. (PBR) Assuming compactness: if composite

hidden-variables models have response functions that are
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state independent for all tensor products ofmixed component
states, then some measurements on composites must have
built-in inefficiencies.

We note that inefficiency based on stochastic indepen-
dence decreases exponentially; if the compactness condition
is used instead, inefficiency for a composite measurement
need not reflect any set percentage of mixing among the
components at all. We end by displaying the strength of
compactness; namely, by showing that, as a simple corollary
of the PBR theorem, compactness implies the breakdown of
additivity usually associated with the Bell-Kochen-Specker
theorem [6,7].

Proposition 3. Assuming compactness and state-
independent response functions, even where all observ-
ables in a sum commute, the value of the sum may not
be equal to the sum of the values of each observable.

Consider the measurement M constructed by PBR cor-
responding to the PBR lemma above. For j ¼ 1; . . . ; N
let Pj ¼ jjihjj be the projectors associated with the eigens-
paces ofM. They are pairwise orthogonal, hence commute,
and they resolve the identity I since the state space was
assumed to be of dimension N. Thus,

I ¼ P1 þ P2 þ � � � þ PN: (5)

The hidden-variables model in the PBR lemma was as-
sumed to be state independent for every j�ji. Then Eq. (3)
implies that a deterministic model would yield Pjð�cÞ ¼ 0

for all j. But to satisfy requirement Eq. (1) on the Born
probabilities for the identity, we need Ið�cÞ ¼ 1. So in
Eq. (5) the value of the sum is 1, but the sum of the values
is 0. Thus the algebra of commuting observables is not
homomorphic to the assignment of values. This is the
conclusion of [6,7], often referred to as contextuality. For
state-independent models, the assumption of compactness
is strong enough to imply it.

Conclusions.—We introduced two important distinctions
among hidden-variables models: mixed models (overlap-
ping hidden-variables spaces for distinct states) versus seg-
regated models, and models with state-dependent versus
state-independent response functions. PBR show that state-
independent models of composites formed using systems
with mixed models face restrictions. It is vital to see that
those restrictions do not imply any difficulty for models
of the components themselves. The PBR theorem is not a
no-go theorem for the component systems, or for mixed
systems generally.

Moreover, we have shown that the restrictions do not
imply that state-independent models for certain systems
must generate statistics that violate the Born probabilities.
Rather, they imply that some measurements have built-in
inefficiencies. This is compatible with obtaining the Born
probabilities using the outcomes that are available, which
is normal experimental practice in the face of noise and
inefficiency. By contrast, Bell’s theorem [4] demonstrates

that certain models must violate the Born statistics if the
measurement efficiency exceeds a certain threshold [15].
In light of propositions 1 and 2, segregation and mixing

seem to be fungible. Thus if one wants to avoid built-in
inefficiency, one can always segregate, without loss, before
forming composites. Alternatively, one could allow state
dependence.
A remark on testability. Even a large overlap of hidden

variables (other than 100%) may well be buried in the
overall inefficiency associated with actual laboratory mea-
surements. Hence, testing the PBR theorem—i.e., testing
models for which both state independence and compact-
ness hold—may require looking for experimental signa-
tures other than inefficiencies. One target would be the
demonstrated failure of additivity (proposition 3), which
may be amenable to tests of the kind used for the product
rule of the Bell-Kochen-Specker theorem [16].
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