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It is suggested that for a Fermi gas at unitarity, the two-body bond plays a special role. We propose an

equation of state using an ansatz relating the interaction part of the l-body cluster to its two-body

counterpart. This allows a parameter-free comparison with the recently measured equation of state by the

ENS group. The agreement between the two over a range of fugacity (z < 5 for a homogeneous gas, and

z < 10 for the trapped gas) leads us to perform the calculations of more sensitive quantities measured

recently by the MIT group.
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Feshbach resonance makes it possible to adjust the
strength of the interatomic interaction in a neutral atomic
gas. When the scattering length goes to �1, there is no
length scale left other than the average interparticle dis-
tance and the thermal wavelength (assuming a zero-range
interaction). The gas is then termed ‘‘unitary’’ and its
properties are universal when expressed in appropriate
dimensionless units at all scales whether the system is
fermionic or bosonic [1]. Recent accurate measurements
by the ENS group [2,3] and the Tokyo group [4] have
confirmed the universal nature of the equation of state
(EOS) of a gas of neutral fermionic atoms, and have given
fresh impetus to its theoretical understanding [5,6]. More
recently, direct measurements by the MIT group [7] of the
isothermal compressibility �, pressure P, and heat capacity
CV=NkB for a unitary gas have revealed the superfluid
transition at Tc=TF ¼ 0:167ð13Þ.

In this Letter—keeping in mind the fundamental nature
of the two-particle bond at unitarity—we propose a de-
scription of the unitary gas as consisting of singlet pairs, in
terms of which all higher-order clusters are expressed. The
resulting EOS extends the agreement with the ENS data
[2,3] on the grand potential over a much larger range of
fugacity z than expected. However, this description breaks
down for z > 5 for the homogeneous gas (and z > 10 for
the harmonically trapped gas). For the homogeneous gas,
z ¼ 5 corresponds to a temperature T=TF ¼ 0:22, below
which the proposed EOS cannot be trusted. We calculate,
with our higher virial coefficients, the pressure, compressi-
bility, and heat capacity of the homogeneous gas to com-
pare with the MIT data [5]. The calculation of these
quantities is a stringent test since they require higher mo-
ments of the virial expansion. We find that inclusion of the
higher virial coefficients yields agreement with the MIT
data for pressure and entropy down to T=TF ¼ 0:3, and the
compressibility and heat capacity to T=TF ¼ 0:6.

To set the stage for the proposed universal EOS,
we briefly recapitulate the virial expansion of a

two-component interacting homogeneous Fermi gas [8].
The grand potential �ð�;�Þ is defined as � ¼ �� lnZ,
where � ¼ kBT ¼ 1=� and Z is the grand canonical par-
tition function. Furthermore, � ¼ �PV, and may be ex-
pressed in a power series of fugacity z ¼ expð��Þ, where
� is the chemical potential. The grand potential � ¼
��Z1ð�Þ

P1
l¼1 blz

l, where Z1ð�Þ is the one-body partition

function, and bl is the l-particle cluster integral. For an
untrapped gas in volume V, we have Z1ð�Þ ¼ 2ðV=�3Þ,
where spin degeneracy of 2 is included and � ¼
ð2�@2�=mÞ1=2 is the thermal wavelength. For a harmonic
oscillator (HO) trap in three dimensions, Z1ð�Þ ¼
2=ð@!�Þ3. For a unitary gas, the cluster integrals bl’s are
also temperature independent in the high-temperature ex-
pansion. Subtracting from � the ideal part of the grand

potential�ð0Þ, we obtain the interaction part of the EOS as

���ð0Þ ¼ ��Z1ð�Þ
X1
l¼2

ð�blÞzl; (1)

where �bl ¼ bl � bð0Þl . Note that b1 ¼ bð0Þ1 ¼ 1, and can-

cels out on taking the difference.
Consider now the special role played by �b2 of the two-

particle cluster at unitarity. In such a gas, the spin-up
fermions have a tendency to pair up with the spin-down
fermions because the short-range interaction potential is on
the verge of producing zero-energy bound states. The
Feshbach resonance being in the relative s state ensures
that the pair interaction will be operative only between

singlet pairs. One finds that [9] �b2 ¼ ð2 ffiffiffi
2

p Þ � 1
2 ð�Z2Þ,

where the factor 2
ffiffiffi
2

p
arises from the c.m. motion, �Z2 is

the relative two-body partition function, and the ‘‘suppres-
sion factor’’ 1

2 arises from the fact that only half of the N

particles can interact in a spin-balanced two-component
Fermi gas. Note that [10] at unitarity �Z2 ¼ 1

2 , yielding

�b2 ¼ 1ffiffi
2

p for such a system. What about the �bl’s for the

l-body clusters that appear in Eq. (1)? Keeping in mind that
the unitary gas may be looked upon as a system consisting
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of forming and dissolving two-body pairs, we conjecture
that for the scale invariant system, the �bl for l > 2 should
be expressible in terms of ð�b2Þ with an appropriate sup-
pression factor. Viewing an l-body cluster as one particle
interacting with the rest from a cluster of ðl� 1Þ paired
particles, we assume that the suppression factor is given by

2N ðl�1Þ , where N ðl�1Þ ¼ ðl� 1Þðl� 2Þ=2 is in general the

number of pairs in a cluster with ðl� 1Þ fermions. Thus,
our basic ansatz is

�bl ¼ ð�Þl ð�b2Þ
2N ðl�1Þ

; l � 2: (2)

For l ¼ 2, N 1 ¼ 0, and Eq. (2) is an identity. The alter-
nating sign ð�Þl in the above equation was put in to keep
the number fluctuation ð�NÞ2= �N ¼ P

ll
2blz

l=
P

llblz
l from

growing to a very large value with z, where ð�NÞ2 ¼ N2 �
�N2 is the number fluctuation, proportional to the isothermal
compressibility [11]. A large value of the compressibility
would lead to a vanishing monopole excitation, which is a
signature of instability [12].

Although our description of the higher virial coefficients
in terms of the second may seem to be very different from
the conventional one, a similar relationship between the
third and second virial coefficients has been found in any-
ons, which is also a scale invariant system [13,14]. This is
obtained by demanding that the divergences in the three-
body clusters cancel by similar divergences in two-body
clusters in the high temperature limit. A formal derivation
for arbitrary l for the unitary gas appears to be nontrivial.

With this ansatz,

���ð0Þ ¼ ��Z1ð�Þð�b2Þ
X1
l¼2

ð�Þl zl

2N ðl�1Þ
: (3)

Experimentally [2,5,15], it is the quantity hð�Þ ¼ �=�ð0Þ
that is extracted, where � ¼ 1=z. This is given by

hð�Þ ¼ 1þ ð�b2Þ
P1

l¼2ð�Þlð�Þ�l=2N ðl�1Þ

~�ð0Þ : (4)

In a homogeneous gas with a spin degeneracy of 2,

~� ð0Þ ¼ 2ffiffiffiffi
�

p
Z 1

0

ffiffi
t

p
lnð1þ ze�tÞdt:

It is worth noting that using Eq. (2) with �b2 ¼ 1=
ffiffiffi
2

p
, we

obtain �b3 ¼ �1=2
ffiffiffi
2

p
,�b4 ¼ 1=8

ffiffiffi
2

p
,�b5 ¼ �1=64

ffiffiffi
2

p
,

etc. Numerically, �b3 is known to great accuracy: it was
calculated up to 8 decimal figures in [16] and has now been
improved to 12 decimal figures [17]. Our ansatz for the
third virial coefficient differs from the numerically com-
puted value in the third decimal and as such cannot be
exact. However, as we shall see the agreement with EOS
data is unaffected by such fine differences in �b3. It is also
estimated [2] that �b4 � 0:096� 0:015, and is consistent
with our prediction within the error bars. It should be
mentioned that �b4 as quoted in Ref. [17] is of a different

sign and magnitude from that quoted in Ref. [2] and our
value. This, however, destroys the agreement with the data
from the ENS group.
Before confronting the experimental data, we note that

for a gas trapped in a three-dimensional HO, Eq. (4) is
modified to [2,5]

hð�Þ ¼ 1þ ð�b2Þ
X1
l¼2

ð�Þl
ðlÞ3=2

��l

2N ðl�1Þ
= ~�ð0Þ; (5)

and ~�ð0Þ ¼ 1
2

R1
0 t2 lnð1þ ze�tÞdt. The additional sup-

pression factor of 1=l3=2 in Eq. (5) was derived in
Ref. [16] assuming a local fugacity in an HO potential.
We are now ready to compare our predictions given by

Eq. (4) for the homogeneous gas and Eq. (5) for the HO
with experimental data. In Fig. 1, hð�Þ � 1 for the homo-
geneous unpolarized gas [as given by our Eq. (4)] is plotted
against � .
The crosses on the plot are the ENS experimental data as

found by Nascimbène et al. [2]. The authors quote that h
and � are accurate to within 6 percent. It will be seen from
this figure that the series given by our Eq. (4) is in good
agreement with the data down to � � 0:2. To put the
agreement in perspective, the same data are plotted as a
function of z ¼ 1=� in Fig. 2, along with the behavior of
the EOS, including virial coefficients up to the fourth
order, as was done by Hu et al. [5]. We see that such a
truncated series could match the data to about z � 1:7. Our
series (4) extends this to about z � 5. This also underlines
the importance of higher-order virial coefficients �bl’s for
l > 4, despite their rapidly diminishing values. For the
curve labelled ‘‘Virial4p,’’ we set �b4 ¼ 0:096—the esti-
mated value [2]—rather than 0.088 given by our ansatz.
Note that the hð�Þ has been calculated in [6] within Padé
approximation and including up to �b3. Despite deviation
from ENS data for � < 1, they obtain surprisingly good
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FIG. 1 (color online). The function hð�Þ � 1 for the untrapped
unitary Fermi gas [from Eq. (4)] as a function of � . The crosses
represent the experimental data presented by Nascimbène et al.
[2] in their Fig. 3(a).

PRL 108, 260402 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending
29 JUNE 2012

260402-2



agreement for energy and entropy per particle down to
T=TF ¼ 0:16.

We now turn to the ENS measurement for the trapped
unitary unpolarized gas, as extracted by Hu et al. [5], and
compare with our Eq. (5). (See Fig. 3.) Here, the conver-
gence of the virial series is faster as expected, and the
agreement is remarkably good down to � � 0:1. Figure 4
shows this clearly when the truncated predictions from
previous work are compared with our result. The range
of applicability of the virial series (5) is now extended
fourfold to z � 10.

It should be noted that the series given in Eqs. (4) and (5)
converge for any value of z. However, the range of validity
of the sum depends on the maximum value of l as seen
from Figs. 2 and 4 for free gas and HO, respectively. The
first few terms make a significant difference but the im-
portance of �bl for l > 8 is minimal even at z ¼ 5. The
series gets saturated by the first twenty terms, which is
denoted as ‘‘full expansion’’ in all the figures.

Encouraged by the agreement with hðzÞ, even deep into
region z > 1 where the normal virial expansion is not
expected to work, we next compare our predictions for
the recently measured data on compressibility, heat ca-
pacity, and pressure by the MIT group [7]. Following their
notation, we write �P ¼ fPðXÞ=�3, where P is the pres-
sure, X ¼ lnz ¼ ��, and fPðXÞ is the universal function
given by

fPðXÞ ¼ 2

�
f5=2½expðXÞ� þ

X1
l¼2

�bl expðlXÞ
�
: (6)

The first term in the bracket is the contribution due to the
ideal Fermi gas, and is the standard Fermi-Dirac integral
[18]. All thermodynamic quantities can now be expressed
in terms of this universal function and its derivatives. (See
Ref. [7].) Specifically, we have pressure and compressibil-
ity normalized by their zero temperature values, P0, �0,
given by

~p ¼ P

P0

¼ 5T

2TF

fPðXÞ
f0PðXÞ

; ~� ¼ �

�0

¼ 2TF

3T

f00PðXÞ
f0PðXÞ

; (7)

where T=TF ¼ 4�=½3�2f0PðXÞ�2=3 is the dimensionless
temperature scale and the prime denotes a derivative with
respect to X. The heat capacity at constant volume and

entropy are given by CV=NkB ¼ 15
4

fPðXÞ
f0PðXÞ �

9
4

f0PðXÞ
f00PðXÞ ¼

3TF

2T �
ð~p� 1=~�Þ, S=NkB ¼ 5

2
fPðXÞ
f0PðXÞ � lnðzÞ. The above expres-

sions allow one to calculate the relevant quantities either
as a function of fugacity z or temperature T=TF using the
virial expansion given by Eq. (6), and to compare them
with the respective experimental data of Ku et al [7].
In the light of our earlier remarks (see Fig. 1), these

comparisons are limited to z values less than 4.95, corre-
sponding to T=TF > 0:22. Figure 5 shows the variation of
the pressure, entropy, and heat capacity as a function of
T=TF. The agreement with experimental data improves

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  1  2  3  4  5

h(
ζ)

-1

1/ζ

full expansion
Virial2
Virial3
Virial4

Virial4p
ENS data

FIG. 2 (color online). The universal function hð�Þ � 1 for the
untrapped Fermi gas plotted as a function of the fugacity 1=� .
The 2nd, 3rd, and 4th virial expansions are also shown. The 4th-
order expansion (labelled ‘‘Virial4p’’) has �b4 ¼ 0:096. The
experimental data are the same as in Fig. 1.
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FIG. 3 (color online). The universal function hð�Þ � 1 for
fermions in a harmonic trap as a function of � , Eq. (5). The
crosses represented the experimental data presented in Fig. 6 of
Hu et al. [5].
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FIG. 4 (color online). The universal function of trapped fer-
mions hð�Þ � 1 as a function of fugacity. See Eq. (5). Virial4p is
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mental data are the same as in Fig. 3.
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noticeably as the higher�bl’s are included. The agreement
for the pressure and entropy hold to T=TT ¼ 0:3, indicat-
ing that the first moments of the virial expansion are good.
This is not the case for the second moments, however, as
the plots for heat capacity vs T=TF show. The theoretical
plots start deviating appreciably from the data for T=TF <
0:6. The same behavior is seen in Fig. 6 where the com-
pressibility is plotted as a function of pressure (in reduced
variables). It is interesting to note that despite these devia-
tions, a peak in the compressibility of about the right
magnitude appears in the theoretical curve, though at a
higher value of P=P0 or T=TF. Though tempting, we are
reluctant to interpret this as indicative of the onset of

superfluidity in view of the inaccuracy of the virial descrip-
tion in this range of temperature or pressure.
We conclude that the high-temperature virial expansion,

in conjunction with our ansatz, can match the EOS over a
significantly larger range of fugacity, corresponding to
about T=TF � 0:3 for the homogeneous gas. Our ansatz
[given by Eq. (2)] resulted from the picture of a unitary
Fermi gas as a dynamic collection of singlet pairs, and
assumed that ð�b2Þ determines the higher virial coeffi-
cients. The resulting success of this picture may point to
some truth in this conjecture, and poses a challenge for
deeper understanding.
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T=TF for the untrapped unitary Fermi gas. The experimental data
are taken from Ku et al. [7].
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